A First Course in Real Analysis PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download A First Course in Real Analysis PDF full book. Access full book title A First Course in Real Analysis by E.R. Suryanarayan. Download full books in PDF and EPUB format.

A First Course in Real Analysis

A First Course in Real Analysis PDF Author: E.R. Suryanarayan
Publisher: Universities Press
ISBN: 9788173714306
Category : Mathematical analysis
Languages : en
Pages : 187

Get Book

Book Description


A First Course in Real Analysis

A First Course in Real Analysis PDF Author: E.R. Suryanarayan
Publisher: Universities Press
ISBN: 9788173714306
Category : Mathematical analysis
Languages : en
Pages : 187

View

Book Description


Real Analysis: A First Course, 2/E

Real Analysis: A First Course, 2/E PDF Author: Gordon
Publisher: Pearson Education India
ISBN: 9788131728581
Category : Mathematical analysis
Languages : en
Pages : 400

View

Book Description


A First Course in Complex Analysis with Applications

A First Course in Complex Analysis with Applications PDF Author: Dennis G. Zill
Publisher: Jones & Bartlett Publishers
ISBN: 1449657524
Category : Mathematics
Languages : en
Pages : 405

View

Book Description
The new Second Edition of A First Course in Complex Analysis with Applications is a truly accessible introduction to the fundamental principles and applications of complex analysis. Designed for the undergraduate student with a calculus background but no prior experience with complex variables, this text discusses theory of the most relevant mathematical topics in a student-friendly manner. With Zill's clear and straightforward writing style, concepts are introduced through numerous examples and clear illustrations. Students are guided and supported through numerous proofs providing them with a higher level of mathematical insight and maturity. Each chapter contains a separate section on the applications of complex variables, providing students with the opportunity to develop a practical and clear understanding of complex analysis.

A First Course in Linear Model Theory

A First Course in Linear Model Theory PDF Author: Nalini Ravishanker
Publisher: CRC Press
ISBN: 1000228630
Category : Mathematics
Languages : en
Pages : 496

View

Book Description
This innovative, intermediate-level statistics text fills an important gap by presenting the theory of linear statistical models at a level appropriate for senior undergraduate or first-year graduate students. With an innovative approach, the author's introduces students to the mathematical and statistical concepts and tools that form a foundation

A First Course in Calculus

A First Course in Calculus PDF Author: Serge Lang
Publisher: Springer Science & Business Media
ISBN: 9780387962016
Category : Mathematics
Languages : en
Pages : 731

View

Book Description
This fifth edition of Lang's book covers all the topics traditionally taught in the first-year calculus sequence. Divided into five parts, each section of A FIRST COURSE IN CALCULUS contains examples and applications relating to the topic covered. In addition, the rear of the book contains detailed solutions to a large number of the exercises, allowing them to be used as worked-out examples -- one of the main improvements over previous editions.

A First Course in Discrete Dynamical Systems

A First Course in Discrete Dynamical Systems PDF Author: Richard A. Holmgren
Publisher: Springer Science & Business Media
ISBN: 1441987320
Category : Mathematics
Languages : en
Pages : 223

View

Book Description
Given the ease with which computers can do iteration it is now possible for almost anyone to generate beautiful images whose roots lie in discrete dynamical systems. Images of Mandelbrot and Julia sets abound in publications both mathematical and not. The mathematics behind the pictures are beautiful in their own right and are the subject of this text. Mathematica programs that illustrate the dynamics are included in an appendix.

A First Course in Mathematical Analysis

A First Course in Mathematical Analysis PDF Author: D. Somasundaram
Publisher:
ISBN: 9788173190902
Category : Mathematical analysis
Languages : en
Pages : 606

View

Book Description


A First Course in Differential Equations

A First Course in Differential Equations PDF Author: J. David Logan
Publisher: Springer Science & Business Media
ISBN: 0387259635
Category : Mathematics
Languages : en
Pages : 289

View

Book Description
While the standard sophomore course on elementary differential equations is typically one semester in length, most of the texts currently being used for these courses have evolved into calculus-like presentations that include a large collection of methods and applications, packaged with state-of-the-art color graphics, student solution manuals, the latest fonts, marginal notes, and web-based supplements. All of this adds up to several hundred pages of text and can be very expensive. Many students do not have the time or desire to read voluminous texts and explore internet supplements. Thats what makes the format of this differential equations book unique. It is a one-semester, brief treatment of the basic ideas, models, and solution methods. Its limited coverage places it somewhere between an outline and a detailed textbook. The author writes concisely, to the point, and in plain language. Many worked examples and exercises are included. A student who works through this primer will have the tools to go to the next level in applying ODEs to problems in engineering, science, and applied mathematics. It will also give instructors, who want more concise coverage, an alternative to existing texts. This text also encourages students to use a computer algebra system to solve problems numerically. It can be stated with certainty that the numerical solution of differential equations is a central activity in science and engineering, and it is absolutely necessary to teach students scientific computation as early as possible. Templates of MATLAB programs that solve differential equations are given in an appendix. Maple and Mathematica commands are given as well. The author taught this material on several ocassions to students who have had a standard three-semester calculus sequence. It has been well received by many students who appreciated having a small, definitive parcel of material to learn. Moreover, this text gives students the opportunity to start reading mathematics at a slightly higher level than experienced in pre-calculus and calculus; not every small detail is included. Therefore the book can be a bridge in their progress to study more advanced material at the junior-senior level, where books leave a lot to the reader and are not packaged with elementary formats. J. David Logan is Professor of Mathematics at the University of Nebraska, Lincoln. He is the author of another recent undergraduate textbook, Applied Partial Differential Equations, 2nd Edition (Springer 2004).

A First Course in Analysis

A First Course in Analysis PDF Author: Donald Yau
Publisher: World Scientific
ISBN: 9814417858
Category : Mathematics
Languages : en
Pages : 195

View

Book Description
This book is an introductory text on real analysis for undergraduate students. The prerequisite for this book is a solid background in freshman calculus in one variable. The intended audience of this book includes undergraduate mathematics majors and students from other disciplines who use real analysis. Since this book is aimed at students who do not have much prior experience with proofs, the pace is slower in earlier chapters than in later chapters. There are hundreds of exercises, and hints for some of them are included.

A First Course in Modular Forms

A First Course in Modular Forms PDF Author: Fred Diamond
Publisher: Springer Science & Business Media
ISBN: 0387272267
Category : Mathematics
Languages : en
Pages : 450

View

Book Description
This book introduces the theory of modular forms, from which all rational elliptic curves arise, with an eye toward the Modularity Theorem. Discussion covers elliptic curves as complex tori and as algebraic curves; modular curves as Riemann surfaces and as algebraic curves; Hecke operators and Atkin-Lehner theory; Hecke eigenforms and their arithmetic properties; the Jacobians of modular curves and the Abelian varieties associated to Hecke eigenforms. As it presents these ideas, the book states the Modularity Theorem in various forms, relating them to each other and touching on their applications to number theory. The authors assume no background in algebraic number theory and algebraic geometry. Exercises are included.