A Friendly Introduction to Mathematical Logic PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download A Friendly Introduction to Mathematical Logic PDF full book. Access full book title A Friendly Introduction to Mathematical Logic by Christopher C. Leary. Download full books in PDF and EPUB format.

A Friendly Introduction to Mathematical Logic

A Friendly Introduction to Mathematical Logic PDF Author: Christopher C. Leary
Publisher: Lulu.com
ISBN: 1942341075
Category : Education
Languages : en
Pages : 382

Book Description
At the intersection of mathematics, computer science, and philosophy, mathematical logic examines the power and limitations of formal mathematical thinking. In this expansion of Leary's user-friendly 1st edition, readers with no previous study in the field are introduced to the basics of model theory, proof theory, and computability theory. The text is designed to be used either in an upper division undergraduate classroom, or for self study. Updating the 1st Edition's treatment of languages, structures, and deductions, leading to rigorous proofs of Gödel's First and Second Incompleteness Theorems, the expanded 2nd Edition includes a new introduction to incompleteness through computability as well as solutions to selected exercises.

A Friendly Introduction to Mathematical Logic

A Friendly Introduction to Mathematical Logic PDF Author: Christopher C. Leary
Publisher: Lulu.com
ISBN: 1942341075
Category : Education
Languages : en
Pages : 382

Book Description
At the intersection of mathematics, computer science, and philosophy, mathematical logic examines the power and limitations of formal mathematical thinking. In this expansion of Leary's user-friendly 1st edition, readers with no previous study in the field are introduced to the basics of model theory, proof theory, and computability theory. The text is designed to be used either in an upper division undergraduate classroom, or for self study. Updating the 1st Edition's treatment of languages, structures, and deductions, leading to rigorous proofs of Gödel's First and Second Incompleteness Theorems, the expanded 2nd Edition includes a new introduction to incompleteness through computability as well as solutions to selected exercises.

Introduction to Mathematical Logic, Fourth Edition

Introduction to Mathematical Logic, Fourth Edition PDF Author: Elliott Mendelson
Publisher: CRC Press
ISBN: 9780412808302
Category : Mathematics
Languages : en
Pages : 464

Book Description
The Fourth Edition of this long-established text retains all the key features of the previous editions, covering the basic topics of a solid first course in mathematical logic. This edition includes an extensive appendix on second-order logic, a section on set theory with urlements, and a section on the logic that results when we allow models with empty domains. The text contains numerous exercises and an appendix furnishes answers to many of them. Introduction to Mathematical Logic includes: propositional logic first-order logic first-order number theory and the incompleteness and undecidability theorems of Gödel, Rosser, Church, and Tarski axiomatic set theory theory of computability The study of mathematical logic, axiomatic set theory, and computability theory provides an understanding of the fundamental assumptions and proof techniques that form basis of mathematics. Logic and computability theory have also become indispensable tools in theoretical computer science, including artificial intelligence. Introduction to Mathematical Logic covers these topics in a clear, reader-friendly style that will be valued by anyone working in computer science as well as lecturers and researchers in mathematics, philosophy, and related fields.

Mathematical Logic

Mathematical Logic PDF Author: George Tourlakis
Publisher: John Wiley & Sons
ISBN: 1118030699
Category : Mathematics
Languages : en
Pages : 294

Book Description
A comprehensive and user-friendly guide to the use of logic inmathematical reasoning Mathematical Logic presents a comprehensive introductionto formal methods of logic and their use as a reliable tool fordeductive reasoning. With its user-friendly approach, this booksuccessfully equips readers with the key concepts and methods forformulating valid mathematical arguments that can be used touncover truths across diverse areas of study such as mathematics,computer science, and philosophy. The book develops the logical tools for writing proofs byguiding readers through both the established "Hilbert" style ofproof writing, as well as the "equational" style that is emergingin computer science and engineering applications. Chapters havebeen organized into the two topical areas of Boolean logic andpredicate logic. Techniques situated outside formal logic areapplied to illustrate and demonstrate significant facts regardingthe power and limitations of logic, such as: Logic can certify truths and only truths. Logic can certify all absolute truths (completeness theorems ofPost and Gödel). Logic cannot certify all "conditional" truths, such as thosethat are specific to the Peano arithmetic. Therefore, logic hassome serious limitations, as shown through Gödel'sincompleteness theorem. Numerous examples and problem sets are provided throughout thetext, further facilitating readers' understanding of thecapabilities of logic to discover mathematical truths. In addition,an extensive appendix introduces Tarski semantics and proceeds withdetailed proofs of completeness and first incompleteness theorems,while also providing a self-contained introduction to the theory ofcomputability. With its thorough scope of coverage and accessible style,Mathematical Logic is an ideal book for courses inmathematics, computer science, and philosophy at theupper-undergraduate and graduate levels. It is also a valuablereference for researchers and practitioners who wish to learn howto use logic in their everyday work.

A First Course in Mathematical Logic and Set Theory

A First Course in Mathematical Logic and Set Theory PDF Author: Michael L. O'Leary
Publisher: John Wiley & Sons
ISBN: 0470905883
Category : Mathematics
Languages : en
Pages : 464

Book Description
A mathematical introduction to the theory and applications of logic and set theory with an emphasis on writing proofs Highlighting the applications and notations of basic mathematical concepts within the framework of logic and set theory, A First Course in Mathematical Logic and Set Theory introduces how logic is used to prepare and structure proofs and solve more complex problems. The book begins with propositional logic, including two-column proofs and truth table applications, followed by first-order logic, which provides the structure for writing mathematical proofs. Set theory is then introduced and serves as the basis for defining relations, functions, numbers, mathematical induction, ordinals, and cardinals. The book concludes with a primer on basic model theory with applications to abstract algebra. A First Course in Mathematical Logic and Set Theory also includes: Section exercises designed to show the interactions between topics and reinforce the presented ideas and concepts Numerous examples that illustrate theorems and employ basic concepts such as Euclid’s lemma, the Fibonacci sequence, and unique factorization Coverage of important theorems including the well-ordering theorem, completeness theorem, compactness theorem, as well as the theorems of Löwenheim–Skolem, Burali-Forti, Hartogs, Cantor–Schröder–Bernstein, and König An excellent textbook for students studying the foundations of mathematics and mathematical proofs, A First Course in Mathematical Logic and Set Theory is also appropriate for readers preparing for careers in mathematics education or computer science. In addition, the book is ideal for introductory courses on mathematical logic and/or set theory and appropriate for upper-undergraduate transition courses with rigorous mathematical reasoning involving algebra, number theory, or analysis.

An Introduction to Gödel's Theorems

An Introduction to Gödel's Theorems PDF Author: Peter Smith
Publisher: Cambridge University Press
ISBN: 0521857848
Category : Mathematics
Languages : en
Pages : 376

Book Description
Peter Smith examines Gödel's Theorems, how they were established and why they matter.

How to Prove It

How to Prove It PDF Author: Daniel J. Velleman
Publisher:
ISBN: 1108337457
Category : Computers
Languages : en
Pages : 472

Book Description
Helps students transition from problem solving to proving theorems, with a new chapter on number theory and over 150 new exercises.

Hilbert’s Tenth Problem: An Introduction to Logic, Number Theory, and Computability

Hilbert’s Tenth Problem: An Introduction to Logic, Number Theory, and Computability PDF Author: M. Ram Murty
Publisher: American Mathematical Soc.
ISBN: 1470443996
Category : Decidability (Mathematical logic)
Languages : en
Pages : 256

Book Description
Hilbert's tenth problem is one of 23 problems proposed by David Hilbert in 1900 at the International Congress of Mathematicians in Paris. These problems gave focus for the exponential development of mathematical thought over the following century. The tenth problem asked for a general algorithm to determine if a given Diophantine equation has a solution in integers. It was finally resolved in a series of papers written by Julia Robinson, Martin Davis, Hilary Putnam, and finally Yuri Matiyasevich in 1970. They showed that no such algorithm exists. This book is an exposition of this remarkable achievement. Often, the solution to a famous problem involves formidable background. Surprisingly, the solution of Hilbert's tenth problem does not. What is needed is only some elementary number theory and rudimentary logic. In this book, the authors present the complete proof along with the romantic history that goes with it. Along the way, the reader is introduced to Cantor's transfinite numbers, axiomatic set theory, Turing machines, and Gödel's incompleteness theorems. Copious exercises are included at the end of each chapter to guide the student gently on this ascent. For the advanced student, the final chapter highlights recent developments and suggests future directions. The book is suitable for undergraduates and graduate students. It is essentially self-contained.

Mathematics Applied in Information Systems

Mathematics Applied in Information Systems PDF Author: Mangey Ram
Publisher: Bentham Science Publishers
ISBN: 1681087138
Category : Computers
Languages : en
Pages : 299

Book Description
Recent developments in information science and technology have been possible due to original and timely research contributions containing new results in various fields of applied mathematics. It is also true that advances in information science create opportunities for developing mathematical models further.

18 Unconventional Essays on the Nature of Mathematics

18 Unconventional Essays on the Nature of Mathematics PDF Author: Reuben Hersh
Publisher: Springer Science & Business Media
ISBN: 0387298312
Category : Mathematics
Languages : en
Pages : 326

Book Description
Collection of the most interesting recent writings on the philosophy of mathematics written by highly respected researchers from philosophy, mathematics, physics, and chemistry Interdisciplinary book that will be useful in several fields—with a cross-disciplinary subject area, and contributions from researchers of various disciplines

A User-friendly Introduction to Discrete Mathematics for Computer Science

A User-friendly Introduction to Discrete Mathematics for Computer Science PDF Author: Willem Labuschagne
Publisher: Unisa Press
ISBN: 9780869818107
Category : Computer science
Languages : en
Pages : 320

Book Description
What mathematical skills do you need to understand computers and the problems they can solve? This book introduces the basic ideas of set theory, logic and combinatorics. Intended for those who work alone and whose experiences of mathematics have in the past perhaps been somewhat intimidating, the book adopts an informal tone and chats to the reader as a well-informed friend might. In addition to its treatment of mathematical topics, it draws the attention of the reader to general patterns of thought, some of which constitute useful problem-solving skills that may be used in other domains.