**Author**: Kevin Falls

**Publisher:** Springer Science & Business Media

**ISBN:** 3319012940

**Category : **Science

**Languages : **en

**Pages : **185

Get Book

**Book Description**
One of the open challenges in fundamental physics is to combine Einstein's theory of general relativity with the principles of quantum mechancis. In this thesis, the question is raised whether metric quantum gravity could be fundamental in the spirit of Steven Weinberg's seminal asymptotic safety conjecture, and if so, what are the consequences for the physics of small, possibly Planck-size black holes? To address the first question, new techniques are provided which allow, for the first time, a self-consistent study of high-order polynomial actions including up to 34 powers in the Ricci scalar. These novel insights are then exploited to explain quantum gravity effects in black holes, including their horizon and causal structure, conformal scaling, evaporation, and the thermodynamics of quantum space-time. Results indicate upper limits on black hole temperature, and the existence of small black holes based on asymptotic safety for gravity and thermodynamical arguments.

**Author**: Kevin Falls

**Publisher:** Springer Science & Business Media

**ISBN:** 3319012940

**Category : **Science

**Languages : **en

**Pages : **185

View

**Book Description**
One of the open challenges in fundamental physics is to combine Einstein's theory of general relativity with the principles of quantum mechancis. In this thesis, the question is raised whether metric quantum gravity could be fundamental in the spirit of Steven Weinberg's seminal asymptotic safety conjecture, and if so, what are the consequences for the physics of small, possibly Planck-size black holes? To address the first question, new techniques are provided which allow, for the first time, a self-consistent study of high-order polynomial actions including up to 34 powers in the Ricci scalar. These novel insights are then exploited to explain quantum gravity effects in black holes, including their horizon and causal structure, conformal scaling, evaporation, and the thermodynamics of quantum space-time. Results indicate upper limits on black hole temperature, and the existence of small black holes based on asymptotic safety for gravity and thermodynamical arguments.

**Author**: Ronald Howland

**Publisher:** Createspace Independent Publishing Platform

**ISBN:** 9781986193542

**Category : **
**Languages : **en

**Pages : **190

View

**Book Description**
In this book, the question is raised whether metric quantum gravity could be fundamental in the spirit of Steven Weinberg's seminal asymptotic safety conjecture, and if so, what the consequences would be for the physics of small, possibly Planck-size black holes. To address the first question, new techniques are provided which allow, for the first time, a self-consistent study of high-order polynomial actions including up to 34 powers in the Ricci scalar. These novel insights are then exploited to explain quantum gravity effects in black holes, including their horizon and causal structure, conformal scaling, evaporation, and the thermodynamics of quantum space-time.

**Author**: Percacci Roberto

**Publisher:** World Scientific

**ISBN:** 9813207191

**Category : **Science

**Languages : **en

**Pages : **312

View

**Book Description**
This book covers recent developments in the covariant formulation of quantum gravity. Developed in the 1960s by Feynman and DeWitt, by the 1980s this approach seemed to lead nowhere due to perturbative non-renormalizability. The possibility of non-perturbative renormalizability or "asymptotic safety", originally suggested by Weinberg but largely ignored for two decades, was revived towards the end of the century by technical progress in the field of the renormalization group. It is now a very active field of research, providing an alternative to other approaches to quantum gravity. Written by one of the early contributors to this subject, this book provides a gentle introduction to the relevant ideas and calculational techniques. Several explicit calculations gradually bring the reader close to the current frontier of research. The main difficulties and present lines of development are also outlined.

**Author**: Zoë H. Slade

**Publisher:** Springer

**ISBN:** 3030195074

**Category : **Science

**Languages : **en

**Pages : **134

View

**Book Description**
After an extensive introduction to the asymptotic safety approach to quantum gravity, this thesis explains recent key advances reported in four influential papers. Firstly, two exact solutions to the reconstruction problem (how to recover a bare action from the effective average action) are provided. Secondly, the fundamental requirement of background independence in quantum gravity is successfully implemented. Working within the derivative expansion of conformally reduced gravity, the notion of compatibility is developed, uncovering the underlying reasons for background dependence generically forbidding fixed points in such models. Thirdly, in order to understand the true nature of fixed-point solutions, one needs to study their asymptotic behaviour. The author carefully explains how to find the asymptotic form of fixed point solutions within the f(R) approximation. Finally, the key findings are summarised and useful extensions of the work are identified. The thesis finishes by considering the need to incorporate matter into the formalism in a compatible way and touches upon potential opportunities to test asymptotic safety in the future.

**Author**: Alessia Benedetta Platania

**Publisher:** Springer

**ISBN:** 3319987941

**Category : **Science

**Languages : **en

**Pages : **142

View

**Book Description**
This book seeks to construct a consistent fundamental quantum theory of gravity, which is often considered one of the most challenging open problems in present-day physics. It approaches this challenge using modern functional renormalization group techniques, and attempts to realize the idea of “Asymptotic Safety” originally proposed by S. Weinberg. Quite remarkably, the book makes significant progress regarding both the fundamental aspects of the program and its phenomenological consequences. The conceptual developments pioneer the construction of a well-behaved functional renormalization group equation adapted to spacetimes with a preferred time-direction. It is demonstrated that the Asymptotic Safety mechanism persists in this setting and extends to many phenomenologically interesting gravity-matter systems. These achievements constitute groundbreaking steps towards bridging the gap between quantum gravity in Euclidean and Lorentzian spacetimes.The phenomenological applications cover core topics in quantum gravity, e.g. constructing a phenomenologically viable cosmological evolution based on quantum gravity effects in the very early universe, and analyzing quantum corrections to black holes forming from a spherical collapse.As a key feature, all developments are presented in a comprehensive and accessible way. This makes the work a timely and valuable guide into the rapidly evolving field of Asymptotic Safety.

**Author**: Astrid Eichhorn

**Publisher:** Frontiers Media SA

**ISBN:** 2889710491

**Category : **Science

**Languages : **en

**Pages : **
View

**Book Description**

**Author**: Martin Reuter

**Publisher:** Cambridge University Press

**ISBN:** 1108608124

**Category : **Science

**Languages : **en

**Pages : **
View

**Book Description**
During the past two decades the gravitational asymptotic safety scenario has undergone a major transition from an exotic possibility to a serious contender for a realistic theory of quantum gravity. It aims at a mathematically consistent quantum description of the gravitational interaction and the geometry of spacetime within the realm of quantum field theory, which keeps its predictive power at the highest energies. This volume provides a self-contained pedagogical introduction to asymptotic safety, and introduces the functional renormalization group techniques used in its investigation, along with the requisite computational techniques. The foundational chapters are followed by an accessible summary of the results obtained so far. It is the first detailed exposition of asymptotic safety, providing a unique introduction to quantum gravity and it assumes no previous familiarity with the renormalization group. It serves as an important resource for both practising researchers and graduate students entering this maturing field.

**Author**: Aaron Held

**Publisher:**
**ISBN:**
**Category : **Holes

**Languages : **en

**Pages : **
View

**Book Description**

**Author**: Paul V. Kreitler

**Publisher:** Nova Publishers

**ISBN:** 9781594544606

**Category : **Science

**Languages : **en

**Pages : **183

View

**Book Description**
A black hole is a point of extreme mass in space-time with a radius, or event horizon, inside of which all electromagnetic radiation (including light) is trapped by gravity. A black hole is an extremely compact object, collapsed by gravity which has overcome electric and nuclear forces. It is believed that stars appreciably larger than the Sun, once they have exhausted all their nuclear fuel, collapse to form black holes: they are "black" because no light escapes their intense gravity. Material attracted to a black hole, though, gains enormous energy and can radiate part of it before being swallowed up. Some astronomers believe that enormously massive black holes exist in the centre of our galaxy and of other galaxies. This new book brings together leading research from through-out the world.

**Author**: Piero Nicolini

**Publisher:** Springer

**ISBN:** 3319200461

**Category : **Science

**Languages : **en

**Pages : **407

View

**Book Description**
These proceedings collect the selected contributions of participants of the First Karl Schwarzschild Meeting on Gravitational Physics, held in Frankfurt, Germany to celebrate the 140th anniversary of Schwarzschild's birth. They are grouped into 4 main themes: I. The Life and Work of Karl Schwarzschild; II. Black Holes in Classical General Relativity, Numerical Relativity, Astrophysics, Cosmology, and Alternative Theories of Gravity; III. Black Holes in Quantum Gravity and String Theory; IV. Other Topics in Contemporary Gravitation. Inspired by the foundational principle ``By acknowledging the past, we open a route to the future", the week-long meeting, envisioned as a forum for exchange between scientists from all locations and levels of education, drew participants from 15 countries across 4 continents. In addition to plenary talks from leading researchers, a special focus on young talent was provided, a feature underlined by the Springer Prize for the best student and junior presentations.