Set Operads in Combinatorics and Computer Science PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Set Operads in Combinatorics and Computer Science PDF full book. Access full book title Set Operads in Combinatorics and Computer Science by Miguel A. Méndez. Download full books in PDF and EPUB format.

Author: Miguel A. Méndez Publisher: Springer ISBN: 3319117130 Category : Mathematics Languages : en Pages : 129

Book Description
This monograph has two main objectives. The first one is to give a self-contained exposition of the relevant facts about set operads, in the context of combinatorial species and its operations. This approach has various advantages: one of them is that the definition of combinatorial operations on species, product, sum, substitution and derivative, are simple and natural. They were designed as the set theoretical counterparts of the homonym operations on exponential generating functions, giving an immediate insight on the combinatorial meaning of them. The second objective is more ambitious. Before formulating it, authors present a brief historic account on the sources of decomposition theory. For more than forty years decompositions of discrete structures have been studied in different branches of discrete mathematics: combinatorial optimization, network and graph theory, switching design or boolean functions, simple multi-person games and clutters, etc.

Author: Miguel A. Méndez Publisher: Springer ISBN: 3319117130 Category : Mathematics Languages : en Pages : 129

Book Description
This monograph has two main objectives. The first one is to give a self-contained exposition of the relevant facts about set operads, in the context of combinatorial species and its operations. This approach has various advantages: one of them is that the definition of combinatorial operations on species, product, sum, substitution and derivative, are simple and natural. They were designed as the set theoretical counterparts of the homonym operations on exponential generating functions, giving an immediate insight on the combinatorial meaning of them. The second objective is more ambitious. Before formulating it, authors present a brief historic account on the sources of decomposition theory. For more than forty years decompositions of discrete structures have been studied in different branches of discrete mathematics: combinatorial optimization, network and graph theory, switching design or boolean functions, simple multi-person games and clutters, etc.

Author: Samuele Giraudo Publisher: Springer ISBN: 3030020746 Category : Mathematics Languages : en Pages : 172

Book Description
Operads are algebraic devices offering a formalization of the concept of operations with several inputs and one output. Such operations can be naturally composed to form more complex ones. Coming historically from algebraic topology, operads intervene now as important objects in computer science and in combinatorics. A lot of operads involving combinatorial objects highlight some of their properties and allow to discover new ones. This book portrays the main elements of this theory under a combinatorial point of view and exposes the links it maintains with computer science and combinatorics. Examples of operads appearing in combinatorics are studied. The modern treatment of operads consisting in considering the space of formal power series associated with an operad is developed. Enrichments of nonsymmetric operads as colored, cyclic, and symmetric operads are reviewed.

Author: Donald Yau Publisher: Springer ISBN: 3319950010 Category : Mathematics Languages : en Pages : 308

Book Description
Wiring diagrams form a kind of graphical language that describes operations or processes with multiple inputs and outputs, and shows how such operations are wired together to form a larger and more complex operation. This monograph presents a comprehensive study of the combinatorial structure of the various operads of wiring diagrams, their algebras, and the relationships between these operads. The book proves finite presentation theorems for operads of wiring diagrams as well as their algebras. These theorems describe the operad in terms of just a few operadic generators and a small number of generating relations. The author further explores recent trends in the application of operad theory to wiring diagrams and related structures, including finite presentations for the propagator algebra, the algebra of discrete systems, the algebra of open dynamical systems, and the relational algebra. A partial verification of David Spivak’s conjecture regarding the quotient-freeness of the relational algebra is also provided. In the final part, the author constructs operad maps between the various operads of wiring diagrams and identifies their images. Assuming only basic knowledge of algebra, combinatorics, and set theory, this book is aimed at advanced undergraduate and graduate students as well as researchers working in operad theory and its applications. Numerous illustrations, examples, and practice exercises are included, making this a self-contained volume suitable for self-study.

Author: Donald Yau Publisher: World Scientific ISBN: 9811250944 Category : Mathematics Languages : en Pages : 486

Book Description
This monograph provides a coherent development of operads, infinity operads, and monoidal categories, equipped with equivariant structures encoded by an action operad. A group operad is a planar operad with an action operad equivariant structure. In the first three parts of this monograph, we establish a foundation for group operads and for their higher coherent analogues called infinity group operads. Examples include planar, symmetric, braided, ribbon, and cactus operads, and their infinity analogues. For example, with the tools developed here, we observe that the coherent ribbon nerve of the universal cover of the framed little 2-disc operad is an infinity ribbon operad.In Part 4 we define general monoidal categories equipped with an action operad equivariant structure and provide a unifying treatment of coherence and strictification for them. Examples of such monoidal categories include symmetric, braided, ribbon, and coboundary monoidal categories, which naturally arise in the representation theory of quantum groups and of coboundary Hopf algebras and in the theory of crystals of finite dimensional complex reductive Lie algebras.

Author: Donald Yau Publisher: American Mathematical Soc. ISBN: 1470427230 Category : Algebra, Homological Languages : en Pages : 428

Book Description
The subject of this book is the theory of operads and colored operads, sometimes called symmetric multicategories. A (colored) operad is an abstract object which encodes operations with multiple inputs and one output and relations between such operations. The theory originated in the early 1970s in homotopy theory and quickly became very important in algebraic topology, algebra, algebraic geometry, and even theoretical physics (string theory). Topics covered include basic graph theory, basic category theory, colored operads, and algebras over colored operads. Free colored operads are discussed in complete detail and in full generality. The intended audience of this book includes students and researchers in mathematics and other sciences where operads and colored operads are used. The prerequisite for this book is minimal. Every major concept is thoroughly motivated. There are many graphical illustrations and about 150 exercises. This book can be used in a graduate course and for independent study.

Author: Marcelo Aguiar Publisher: Cambridge University Press ISBN: 1108852785 Category : Mathematics Languages : en Pages :

Book Description
The goal of this monograph is to develop Hopf theory in a new setting which features centrally a real hyperplane arrangement. The new theory is parallel to the classical theory of connected Hopf algebras, and relates to it when specialized to the braid arrangement. Joyal's theory of combinatorial species, ideas from Tits' theory of buildings, and Rota's work on incidence algebras inspire and find a common expression in this theory. The authors introduce notions of monoid, comonoid, bimonoid, and Lie monoid relative to a fixed hyperplane arrangement. They also construct universal bimonoids by using generalizations of the classical notions of shuffle and quasishuffle, and establish the Borel–Hopf, Poincaré–Birkhoff–Witt, and Cartier–Milnor–Moore theorems in this setting. This monograph opens a vast new area of research. It will be of interest to students and researchers working in the areas of hyperplane arrangements, semigroup theory, Hopf algebras, algebraic Lie theory, operads, and category theory.

Author: Marcelo Aguiar Publisher: Cambridge University Press ISBN: 100924373X Category : Mathematics Languages : en Pages : 897

Book Description
The goal of this monograph is to develop Hopf theory in the setting of a real reflection arrangement. The central notion is that of a Coxeter bialgebra which generalizes the classical notion of a connected graded Hopf algebra. The authors also introduce the more structured notion of a Coxeter bimonoid and connect the two notions via a family of functors called Fock functors. These generalize similar functors connecting Hopf monoids in the category of Joyal species and connected graded Hopf algebras. This monograph opens a new chapter in Coxeter theory as well as in Hopf theory, connecting the two. It also relates fruitfully to many other areas of mathematics such as discrete geometry, semigroup theory, associative algebras, algebraic Lie theory, operads, and category theory. It is carefully written, with effective use of tables, diagrams, pictures, and summaries. It will be of interest to students and researchers alike.

Author: Nicola Gambino Publisher: American Mathematical Soc. ISBN: 1470425769 Category : Algebra, Homological Languages : en Pages : 110

Book Description
The authors develop further the theory of operads and analytic functors. In particular, they introduce the bicategory of operad bimodules, that has operads as -cells, operad bimodules as -cells and operad bimodule maps as 2-cells, and prove that it is cartesian closed. In order to obtain this result, the authors extend the theory of distributors and the formal theory of monads.

Author: Jean-Pierre Gazeau Publisher: IOS Press ISBN: 1586037064 Category : Science Languages : en Pages : 349

Book Description
Aims to reinforce the interface between physical sciences, theoretical computer science, and discrete mathematics. This book assembles theoretical physicists and specialists of theoretical informatics and discrete mathematics in order to learn about developments in cryptography, algorithmics, and more.