Author: Jennifer Herron
Publisher: Rowman & Littlefield
ISBN: 1538118807
Category : Language Arts & Disciplines
Languages : en
Pages : 196
Book Description
Supporting tomorrow’s doctors involves preparing them for the technologies that will be available to them. 3D printing is one such technology that is becoming more abundant in health care settings and is similarly a technology libraries are embracing as a new service offering for their communities. 3D Printing in Medical Libraries: A Crash Course in Supporting Innovation in Health Care will provide librarians interested in starting or enhancing a 3D printing service an overview of 3D printing, highlight legal concerns, discuss 3D printing in libraries through a literature review, review survey results on 3D printing services in health sciences and medical libraries, and offer case studies of health sciences and medical libraries currently 3D printing. Additionally, resources for finding medically related models for printing and tips of how to search for models online is also provided, along with resources for creating 3D models from DICOM. Common print problems and troubleshooting tips are also highlighted and lastly, marketing and outreach opportunities are discussed. Herron presents the nitty-gritty of 3D printing without getting too technical, and a wealth of recommended resources is provided to support librarians wishing to delve further into 3D printing. Design thinking and the Maker Movement is also discussed to promote a holistic service offering that supports users not only with the service but the skills to best use the service. Readers will finish the book with a better sense of direction for 3D printing in health sciences and medical libraries and have a guide to establishing or enhancing a 3D printing in their library. This book appeals to health sciences libraries and librarians looking to start a 3D printing service or understand the 3D printing space as it relates to medical education, practice, and research. It serves as: a field guide for starting a new library service a primer for meeting the information needs of medical faculty, staff, and students a useful reference for a deep dive into this space by librarians who are already actively carrying out some of the kinds of work described herein
3D Printing in Medical Libraries
Author: Jennifer Herron
Publisher: Rowman & Littlefield
ISBN: 1538118807
Category : Language Arts & Disciplines
Languages : en
Pages : 196
Book Description
Supporting tomorrow’s doctors involves preparing them for the technologies that will be available to them. 3D printing is one such technology that is becoming more abundant in health care settings and is similarly a technology libraries are embracing as a new service offering for their communities. 3D Printing in Medical Libraries: A Crash Course in Supporting Innovation in Health Care will provide librarians interested in starting or enhancing a 3D printing service an overview of 3D printing, highlight legal concerns, discuss 3D printing in libraries through a literature review, review survey results on 3D printing services in health sciences and medical libraries, and offer case studies of health sciences and medical libraries currently 3D printing. Additionally, resources for finding medically related models for printing and tips of how to search for models online is also provided, along with resources for creating 3D models from DICOM. Common print problems and troubleshooting tips are also highlighted and lastly, marketing and outreach opportunities are discussed. Herron presents the nitty-gritty of 3D printing without getting too technical, and a wealth of recommended resources is provided to support librarians wishing to delve further into 3D printing. Design thinking and the Maker Movement is also discussed to promote a holistic service offering that supports users not only with the service but the skills to best use the service. Readers will finish the book with a better sense of direction for 3D printing in health sciences and medical libraries and have a guide to establishing or enhancing a 3D printing in their library. This book appeals to health sciences libraries and librarians looking to start a 3D printing service or understand the 3D printing space as it relates to medical education, practice, and research. It serves as: a field guide for starting a new library service a primer for meeting the information needs of medical faculty, staff, and students a useful reference for a deep dive into this space by librarians who are already actively carrying out some of the kinds of work described herein
Publisher: Rowman & Littlefield
ISBN: 1538118807
Category : Language Arts & Disciplines
Languages : en
Pages : 196
Book Description
Supporting tomorrow’s doctors involves preparing them for the technologies that will be available to them. 3D printing is one such technology that is becoming more abundant in health care settings and is similarly a technology libraries are embracing as a new service offering for their communities. 3D Printing in Medical Libraries: A Crash Course in Supporting Innovation in Health Care will provide librarians interested in starting or enhancing a 3D printing service an overview of 3D printing, highlight legal concerns, discuss 3D printing in libraries through a literature review, review survey results on 3D printing services in health sciences and medical libraries, and offer case studies of health sciences and medical libraries currently 3D printing. Additionally, resources for finding medically related models for printing and tips of how to search for models online is also provided, along with resources for creating 3D models from DICOM. Common print problems and troubleshooting tips are also highlighted and lastly, marketing and outreach opportunities are discussed. Herron presents the nitty-gritty of 3D printing without getting too technical, and a wealth of recommended resources is provided to support librarians wishing to delve further into 3D printing. Design thinking and the Maker Movement is also discussed to promote a holistic service offering that supports users not only with the service but the skills to best use the service. Readers will finish the book with a better sense of direction for 3D printing in health sciences and medical libraries and have a guide to establishing or enhancing a 3D printing in their library. This book appeals to health sciences libraries and librarians looking to start a 3D printing service or understand the 3D printing space as it relates to medical education, practice, and research. It serves as: a field guide for starting a new library service a primer for meeting the information needs of medical faculty, staff, and students a useful reference for a deep dive into this space by librarians who are already actively carrying out some of the kinds of work described herein
3D Printing
Author: Sara Russell Gonzalez
Publisher: Rowman & Littlefield
ISBN: 1442255498
Category : Language Arts & Disciplines
Languages : en
Pages : 191
Book Description
Planning and implementing a 3D printing service in a library may seem like a daunting task. Based upon the authors’ experience as early adopters of 3D technology and running a successful 3D printing service at a large academic library, this guide provides the steps to follow when launching a service in any type of library. Detailed guidance and over 50 graphics provide readers with sage guidance and detailed instructions on: planning a proposal printer selection tips preparing the location addressing staff concerns for new service developing service workflows and procedures managing inevitable disasters developing policies conducting the “reference interview” for 3D printing staff training tips outreach activities This book brings into one place all the guidance you need for developing and implementing a 3D printing service in any library.
Publisher: Rowman & Littlefield
ISBN: 1442255498
Category : Language Arts & Disciplines
Languages : en
Pages : 191
Book Description
Planning and implementing a 3D printing service in a library may seem like a daunting task. Based upon the authors’ experience as early adopters of 3D technology and running a successful 3D printing service at a large academic library, this guide provides the steps to follow when launching a service in any type of library. Detailed guidance and over 50 graphics provide readers with sage guidance and detailed instructions on: planning a proposal printer selection tips preparing the location addressing staff concerns for new service developing service workflows and procedures managing inevitable disasters developing policies conducting the “reference interview” for 3D printing staff training tips outreach activities This book brings into one place all the guidance you need for developing and implementing a 3D printing service in any library.
3D Printing in Medicine
Author: Frank J. Rybicki
Publisher: Springer
ISBN: 3319619241
Category : Medical
Languages : en
Pages : 139
Book Description
This book describes the fundamentals of three-dimensional (3D) printing, addresses the practical aspects of establishing a 3D printing service in a medical facility, and explains the enormous potential value of rendering images as 3D printed models capable of providing tactile feedback and tangible information on both anatomic and pathologic states. Individual chapters also focus on selected areas of applications for 3D printing, including musculoskeletal, craniomaxillofacial, cardiovascular, and neurosurgery applications. Challenges and opportunities related to training, materials and equipment, and guidelines are addressed, and the overall costs of a 3D printing lab and the balancing of these costs against clinical benefits are discussed. Radiologists, surgeons, and other physicians will find this book to be a rich source of information on the practicalities and expanding medical applications of 3D printing.
Publisher: Springer
ISBN: 3319619241
Category : Medical
Languages : en
Pages : 139
Book Description
This book describes the fundamentals of three-dimensional (3D) printing, addresses the practical aspects of establishing a 3D printing service in a medical facility, and explains the enormous potential value of rendering images as 3D printed models capable of providing tactile feedback and tangible information on both anatomic and pathologic states. Individual chapters also focus on selected areas of applications for 3D printing, including musculoskeletal, craniomaxillofacial, cardiovascular, and neurosurgery applications. Challenges and opportunities related to training, materials and equipment, and guidelines are addressed, and the overall costs of a 3D printing lab and the balancing of these costs against clinical benefits are discussed. Radiologists, surgeons, and other physicians will find this book to be a rich source of information on the practicalities and expanding medical applications of 3D printing.
3D Printing for Energy Applications
Author: Albert Tarancón
Publisher: John Wiley & Sons
ISBN: 1119560764
Category : Technology & Engineering
Languages : en
Pages : 400
Book Description
3D PRINTING FOR ENERGY APPLICATIONS Explore current and future perspectives of 3D printing for the fabrication of high value-added complex devices 3D Printing for Energy Applications delivers an insightful and cutting-edge exploration of the applications of 3D printing to the fabrication of complex devices in the energy sector. The book covers aspects related to additive manufacturing of functional materials with applicability in the energy sector. It reviews both the technology of printable materials and 3D printing strategies itself, and its use in energy devices or systems. Split into three sections, the book covers the 3D printing of functional materials before delving into the 3D printing of energy devices. It closes with printing challenges in the production of complex objects. It also presents an interesting perspective on the future of 3D printing of complex devices. Readers will also benefit from the inclusion of: A thorough introduction to 3D printing of functional materials, including metals, ceramics, and composites An exploration of 3D printing challenges for production of complex objects, including computational design, multimaterials, tailoring AM components, and volumetric additive manufacturing Practical discussions of 3D printing of energy devices, including batteries, supercaps, solar panels, fuel cells, turbomachinery, thermoelectrics, and CCUS Perfect for materials scientists, 3D Printing for Energy Applications will also earn a place in the libraries of graduate students in engineering, chemistry, and material sciences seeking a one-stop reference for current and future perspectives on 3D printing of high value-added complex devices.
Publisher: John Wiley & Sons
ISBN: 1119560764
Category : Technology & Engineering
Languages : en
Pages : 400
Book Description
3D PRINTING FOR ENERGY APPLICATIONS Explore current and future perspectives of 3D printing for the fabrication of high value-added complex devices 3D Printing for Energy Applications delivers an insightful and cutting-edge exploration of the applications of 3D printing to the fabrication of complex devices in the energy sector. The book covers aspects related to additive manufacturing of functional materials with applicability in the energy sector. It reviews both the technology of printable materials and 3D printing strategies itself, and its use in energy devices or systems. Split into three sections, the book covers the 3D printing of functional materials before delving into the 3D printing of energy devices. It closes with printing challenges in the production of complex objects. It also presents an interesting perspective on the future of 3D printing of complex devices. Readers will also benefit from the inclusion of: A thorough introduction to 3D printing of functional materials, including metals, ceramics, and composites An exploration of 3D printing challenges for production of complex objects, including computational design, multimaterials, tailoring AM components, and volumetric additive manufacturing Practical discussions of 3D printing of energy devices, including batteries, supercaps, solar panels, fuel cells, turbomachinery, thermoelectrics, and CCUS Perfect for materials scientists, 3D Printing for Energy Applications will also earn a place in the libraries of graduate students in engineering, chemistry, and material sciences seeking a one-stop reference for current and future perspectives on 3D printing of high value-added complex devices.
A History of ALA Policy on Intellectual Freedom
Author: Office for Intellectual Freedom (OIF)
Publisher: American Library Association
ISBN: 0838913253
Category : Language Arts & Disciplines
Languages : en
Pages : 359
Book Description
Collecting several key documents and policy statements, this supplement to the ninth edition of the Intellectual Freedom Manual traces a history of ALA’s commitment to fighting censorship. An introductory essay by Judith Krug and Candace Morgan, updated by OIF Director Barbara Jones, sketches out an overview of ALA policy on intellectual freedom. An important resource, this volume includes documents which discuss such foundational issues as The Library Bill of RightsProtecting the freedom to readALA’s Code of EthicsHow to respond to challenges and concerns about library resourcesMinors and internet activityMeeting rooms, bulletin boards, and exhibitsCopyrightPrivacy, including the retention of library usage records
Publisher: American Library Association
ISBN: 0838913253
Category : Language Arts & Disciplines
Languages : en
Pages : 359
Book Description
Collecting several key documents and policy statements, this supplement to the ninth edition of the Intellectual Freedom Manual traces a history of ALA’s commitment to fighting censorship. An introductory essay by Judith Krug and Candace Morgan, updated by OIF Director Barbara Jones, sketches out an overview of ALA policy on intellectual freedom. An important resource, this volume includes documents which discuss such foundational issues as The Library Bill of RightsProtecting the freedom to readALA’s Code of EthicsHow to respond to challenges and concerns about library resourcesMinors and internet activityMeeting rooms, bulletin boards, and exhibitsCopyrightPrivacy, including the retention of library usage records
Research Anthology on Emerging Technologies and Ethical Implications in Human Enhancement
Author: Management Association, Information Resources
Publisher: IGI Global
ISBN: 1799881032
Category : Science
Languages : en
Pages : 791
Book Description
Along with the introduction of technology in nearly every facet of human life comes the question of the ethical side of using technology to improve the human condition, whether that be physically or mentally. The capabilities of human enhancement technologies have created a dual-sided approach to discussing human enhancement: the critical approach of attempting to reach human perfection and the ethics within that idea and the endless capabilities of technology that have greatly impacted the medical field. It is essential to discuss both aspects within these emerging technologies, whether as separate entities or as cohesive units. Ranging from disease detection and treatment to implants and prosthetics to robotics and genetic engineering, human enhancement technologies are widespread and multi-purposed. By going beyond the capabilities of human hands, these technologies have propelled modern medicine and healthcare to new levels that have allowed humans to face new treatments or assistive technologies not seen before. The Research Anthology on Emerging Technologies and Ethical Implications in Human Enhancement covers the primary technologies and tools being used in medicine and healthcare along with discussions on the ethics of enhancing the human body. Topics covered include prosthetics and implants, robotics, human disorders/diseases and treatments and smart technologies, along with law and theory. This publication serves as a valuable reference work for doctors, medical professionals, researchers, students, professionals, and practitioners involved in fields that include ethics, medicine, computer science, robotics, genetics, assistive technologies, nanotechnology, biomedical engineering, and biotechnology.
Publisher: IGI Global
ISBN: 1799881032
Category : Science
Languages : en
Pages : 791
Book Description
Along with the introduction of technology in nearly every facet of human life comes the question of the ethical side of using technology to improve the human condition, whether that be physically or mentally. The capabilities of human enhancement technologies have created a dual-sided approach to discussing human enhancement: the critical approach of attempting to reach human perfection and the ethics within that idea and the endless capabilities of technology that have greatly impacted the medical field. It is essential to discuss both aspects within these emerging technologies, whether as separate entities or as cohesive units. Ranging from disease detection and treatment to implants and prosthetics to robotics and genetic engineering, human enhancement technologies are widespread and multi-purposed. By going beyond the capabilities of human hands, these technologies have propelled modern medicine and healthcare to new levels that have allowed humans to face new treatments or assistive technologies not seen before. The Research Anthology on Emerging Technologies and Ethical Implications in Human Enhancement covers the primary technologies and tools being used in medicine and healthcare along with discussions on the ethics of enhancing the human body. Topics covered include prosthetics and implants, robotics, human disorders/diseases and treatments and smart technologies, along with law and theory. This publication serves as a valuable reference work for doctors, medical professionals, researchers, students, professionals, and practitioners involved in fields that include ethics, medicine, computer science, robotics, genetics, assistive technologies, nanotechnology, biomedical engineering, and biotechnology.
3D Printing for the Radiologist, E-Book
Author: Nicole Wake
Publisher: Elsevier Health Sciences
ISBN: 0323775748
Category : Medical
Languages : en
Pages : 244
Book Description
Comprehensive, yet concise, 3D Printing for the Radiologist presents an overview of three-dimensional printing at the point of care. Focusing on opportunities and challenges in radiology practice, this up-to-date reference covers computer-aided design principles, quality assurance, training, and guidance for integrating 3D printing across radiology subspecialties. Practicing and trainee radiologists, surgeons, researchers, and imaging specialists will find this an indispensable resource for furthering their understanding of the current state and future outlooks for 3D printing in clinical medicine. - Covers a wide range of topics, including basic principles of 3D printing, quality assurance, regulatory perspectives, and practical implementation in medical training and practice. - Addresses the challenges associated with 3D printing integration in clinical settings, such as reimbursement, regulatory issues, and training. - Features concise chapters from a team of multidisciplinary chapter authors, including practicing radiologists, researchers, and engineers. - Consolidates today's available information on this timely topic into a single, convenient, resource.
Publisher: Elsevier Health Sciences
ISBN: 0323775748
Category : Medical
Languages : en
Pages : 244
Book Description
Comprehensive, yet concise, 3D Printing for the Radiologist presents an overview of three-dimensional printing at the point of care. Focusing on opportunities and challenges in radiology practice, this up-to-date reference covers computer-aided design principles, quality assurance, training, and guidance for integrating 3D printing across radiology subspecialties. Practicing and trainee radiologists, surgeons, researchers, and imaging specialists will find this an indispensable resource for furthering their understanding of the current state and future outlooks for 3D printing in clinical medicine. - Covers a wide range of topics, including basic principles of 3D printing, quality assurance, regulatory perspectives, and practical implementation in medical training and practice. - Addresses the challenges associated with 3D printing integration in clinical settings, such as reimbursement, regulatory issues, and training. - Features concise chapters from a team of multidisciplinary chapter authors, including practicing radiologists, researchers, and engineers. - Consolidates today's available information on this timely topic into a single, convenient, resource.
Essentials of 3D Biofabrication and Translation
Author: Anthony Atala
Publisher: Academic Press
ISBN: 0128010150
Category : Science
Languages : en
Pages : 441
Book Description
Essentials of 3D Biofabrication and Translation discusses the techniques that are making bioprinting a viable alternative in regenerative medicine. The book runs the gamut of topics related to the subject, including hydrogels and polymers, nanotechnology, toxicity testing, and drug screening platforms, also introducing current applications in the cardiac, skeletal, and nervous systems, and organ construction. Leaders in clinical medicine and translational science provide a global perspective of the transformative nature of this field, including the use of cells, biomaterials, and macromolecules to create basic building blocks of tissues and organs, all of which are driving the field of biofabrication to transform regenerative medicine. - Provides a new and versatile method to fabricating living tissue - Discusses future applications for 3D bioprinting technologies, including use in the cardiac, skeletal, and nervous systems, and organ construction - Describes current approaches and future challenges for translational science - Runs the gamut of topics related to the subject, from hydrogels and polymers to nanotechnology, toxicity testing, and drug screening platforms
Publisher: Academic Press
ISBN: 0128010150
Category : Science
Languages : en
Pages : 441
Book Description
Essentials of 3D Biofabrication and Translation discusses the techniques that are making bioprinting a viable alternative in regenerative medicine. The book runs the gamut of topics related to the subject, including hydrogels and polymers, nanotechnology, toxicity testing, and drug screening platforms, also introducing current applications in the cardiac, skeletal, and nervous systems, and organ construction. Leaders in clinical medicine and translational science provide a global perspective of the transformative nature of this field, including the use of cells, biomaterials, and macromolecules to create basic building blocks of tissues and organs, all of which are driving the field of biofabrication to transform regenerative medicine. - Provides a new and versatile method to fabricating living tissue - Discusses future applications for 3D bioprinting technologies, including use in the cardiac, skeletal, and nervous systems, and organ construction - Describes current approaches and future challenges for translational science - Runs the gamut of topics related to the subject, from hydrogels and polymers to nanotechnology, toxicity testing, and drug screening platforms
Cutting-Edge 3D Printing
Author: Karen Latchana Kenney
Publisher: Lerner Publications ™
ISBN: 1541537025
Category : Juvenile Nonfiction
Languages : en
Pages : 35
Book Description
What if people could make toys, foods, or even body parts using a computer printer? They can! Modern programmers and scientists have figured out a way to make three-dimensional versions of almost anything they can design on a computer. This title covers the latest, greatest advances in 3D printing, from how it works to how it's used in homes, schools, and workplaces. Accessible language, up-to-date photos, and a high-interest STEM topic make this a great choice for eager and reluctant readers alike.
Publisher: Lerner Publications ™
ISBN: 1541537025
Category : Juvenile Nonfiction
Languages : en
Pages : 35
Book Description
What if people could make toys, foods, or even body parts using a computer printer? They can! Modern programmers and scientists have figured out a way to make three-dimensional versions of almost anything they can design on a computer. This title covers the latest, greatest advances in 3D printing, from how it works to how it's used in homes, schools, and workplaces. Accessible language, up-to-date photos, and a high-interest STEM topic make this a great choice for eager and reluctant readers alike.
3D Printing of Pharmaceuticals
Author: Abdul W. Basit
Publisher: Springer
ISBN: 3319907557
Category : Medical
Languages : en
Pages : 246
Book Description
3D printing is forecast to revolutionise the pharmaceutical sector, changing the face of medicine development, manufacture and use. Potential applications range from pre-clinical drug development and dosage form design through to the fabrication of functionalised implants and regenerative medicine. Within clinical pharmacy practice, printing technologies may finally lead to the concept of personalised medicines becoming a reality. This volume aims to be the definitive resource for anyone thinking of developing or using 3D printing technologies in the pharmaceutical sector, with a strong focus on the translation of printing technologies to a clinical setting. This text brings together leading experts to provide extensive information on an array of 3D printing techniques, reviewing the current printing technologies in the pharmaceutical manufacturing supply chain, in particular, highlighting the state-of-the-art applications in medicine and discussing modern drug product manufacture from a regulatory perspective. This book is a highly valuable resource for a range of demographics, including academic researchers and the pharmaceutical industry, providing a comprehensive inventory detailing the current and future applications of 3D printing in pharmaceuticals. Abdul W. Basit is Professor of Pharmaceutics at the UCL School of Pharmacy, University College London. Abdul’s research sits at the interface between pharmaceutical science and gastroenterology, forging links between basic science and clinical outcomes. He leads a large and multidisciplinary research group, and the goal of his work is to further the understanding of gastrointestinal physiology by fundamental research. So far, this knowledge has been translated into the design of new technologies and improved disease treatments, many of which are currently in late-stage clinical trials. He has published over 350 papers, book chapters and abstracts and delivered more than 250 invited research presentations. Abdul is also a serial entrepreneur and has filed 25 patents and founded 3 pharmaceutical companies (Kuecept, Intract Pharma, FabRx). Abdul is a frequent speaker at international conferences, serves as a consultant to many pharmaceutical companies and is on the advisory boards of scientific journals, healthcare organisations and charitable bodies. He is the European Editor of the International Journal of Pharmaceutics. Abdul was the recipient of the Young Investigator Award in Pharmaceutics and Pharmaceutical Technology from the American Association of Pharmaceutical Scientists (AAPS) and is the only non-North American scientist to receive this award. He was also the recipient of the Academy of Pharmaceutical Sciences (APS) award. Simon Gaisford holds a Chair in Pharmaceutics and is Head of the Department of Pharmaceutics at the UCL School of Pharmacy, University College London. He has published 110 papers, 8 book chapters and 4 authored books. His research is focused on novel technologies for manufacturing medicines, particularly using ink-jet printing and 3D printing, and he is an expert in the physico-chemical characterisation of compounds and formulations with thermal methods and calorimetry.
Publisher: Springer
ISBN: 3319907557
Category : Medical
Languages : en
Pages : 246
Book Description
3D printing is forecast to revolutionise the pharmaceutical sector, changing the face of medicine development, manufacture and use. Potential applications range from pre-clinical drug development and dosage form design through to the fabrication of functionalised implants and regenerative medicine. Within clinical pharmacy practice, printing technologies may finally lead to the concept of personalised medicines becoming a reality. This volume aims to be the definitive resource for anyone thinking of developing or using 3D printing technologies in the pharmaceutical sector, with a strong focus on the translation of printing technologies to a clinical setting. This text brings together leading experts to provide extensive information on an array of 3D printing techniques, reviewing the current printing technologies in the pharmaceutical manufacturing supply chain, in particular, highlighting the state-of-the-art applications in medicine and discussing modern drug product manufacture from a regulatory perspective. This book is a highly valuable resource for a range of demographics, including academic researchers and the pharmaceutical industry, providing a comprehensive inventory detailing the current and future applications of 3D printing in pharmaceuticals. Abdul W. Basit is Professor of Pharmaceutics at the UCL School of Pharmacy, University College London. Abdul’s research sits at the interface between pharmaceutical science and gastroenterology, forging links between basic science and clinical outcomes. He leads a large and multidisciplinary research group, and the goal of his work is to further the understanding of gastrointestinal physiology by fundamental research. So far, this knowledge has been translated into the design of new technologies and improved disease treatments, many of which are currently in late-stage clinical trials. He has published over 350 papers, book chapters and abstracts and delivered more than 250 invited research presentations. Abdul is also a serial entrepreneur and has filed 25 patents and founded 3 pharmaceutical companies (Kuecept, Intract Pharma, FabRx). Abdul is a frequent speaker at international conferences, serves as a consultant to many pharmaceutical companies and is on the advisory boards of scientific journals, healthcare organisations and charitable bodies. He is the European Editor of the International Journal of Pharmaceutics. Abdul was the recipient of the Young Investigator Award in Pharmaceutics and Pharmaceutical Technology from the American Association of Pharmaceutical Scientists (AAPS) and is the only non-North American scientist to receive this award. He was also the recipient of the Academy of Pharmaceutical Sciences (APS) award. Simon Gaisford holds a Chair in Pharmaceutics and is Head of the Department of Pharmaceutics at the UCL School of Pharmacy, University College London. He has published 110 papers, 8 book chapters and 4 authored books. His research is focused on novel technologies for manufacturing medicines, particularly using ink-jet printing and 3D printing, and he is an expert in the physico-chemical characterisation of compounds and formulations with thermal methods and calorimetry.