A First Course in Computational Physics PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download A First Course in Computational Physics PDF full book. Access full book title A First Course in Computational Physics by Paul L. DeVries. Download full books in PDF and EPUB format.

A First Course in Computational Physics

A First Course in Computational Physics PDF Author: Paul L. DeVries
Publisher: Jones & Bartlett Publishers
ISBN: 1449636195
Category : Science
Languages : en
Pages : 444

Book Description
Computers and computation are extremely important components of physics and should be integral parts of a physicist’s education. Furthermore, computational physics is reshaping the way calculations are made in all areas of physics. Intended for the physics and engineering students who have completed the introductory physics course, A First Course in Computational Physics, Second Edition covers the different types of computational problems using MATLAB with exercises developed around problems of physical interest. Topics such as root finding, Newton-Cotes integration, and ordinary differential equations are included and presented in the context of physics problems. A few topics rarely seen at this level such as computerized tomography, are also included. Within each chapter, the student is led from relatively elementary problems and simple numerical approaches through derivations of more complex and sophisticated methods, often culminating in the solution to problems of significant difficulty. The goal is to demonstrate how numerical methods are used to solve the problems that physicists face. Read the review published in Computing in Science & Engineering magazine, March/April 2011 (Vol. 13, No. 2) © 2011 IEEE, Published by the IEEE Computer Society

A First Course in Computational Physics

A First Course in Computational Physics PDF Author: Paul L. DeVries
Publisher: Jones & Bartlett Publishers
ISBN: 1449636195
Category : Science
Languages : en
Pages : 444

Book Description
Computers and computation are extremely important components of physics and should be integral parts of a physicist’s education. Furthermore, computational physics is reshaping the way calculations are made in all areas of physics. Intended for the physics and engineering students who have completed the introductory physics course, A First Course in Computational Physics, Second Edition covers the different types of computational problems using MATLAB with exercises developed around problems of physical interest. Topics such as root finding, Newton-Cotes integration, and ordinary differential equations are included and presented in the context of physics problems. A few topics rarely seen at this level such as computerized tomography, are also included. Within each chapter, the student is led from relatively elementary problems and simple numerical approaches through derivations of more complex and sophisticated methods, often culminating in the solution to problems of significant difficulty. The goal is to demonstrate how numerical methods are used to solve the problems that physicists face. Read the review published in Computing in Science & Engineering magazine, March/April 2011 (Vol. 13, No. 2) © 2011 IEEE, Published by the IEEE Computer Society

A First Course in Computational Physics

A First Course in Computational Physics PDF Author: Paul DeVries
Publisher: Jones & Bartlett Learning
ISBN: 076377314X
Category : Technology & Engineering
Languages : en
Pages : 445

Book Description
Computers and computation are extremely important components of physics and should be integral parts of a physicist’s education. Furthermore, computational physics is reshaping the way calculations are made in all areas of physics. Intended for the physics and engineering students who have completed the introductory physics course, A First Course in Computational Physics, Second Edition covers the different types of computational problems using MATLAB with exercises developed around problems of physical interest. Topics such as root finding, Newton-Cotes integration, and ordinary differential equations are included and presented in the context of physics problems. A few topics rarely seen at this level such as computerized tomography, are also included. Within each chapter, the student is led from relatively elementary problems and simple numerical approaches through derivations of more complex and sophisticated methods, often culminating in the solution to problems of significant difficulty. The goal is to demonstrate how numerical methods are used to solve the problems that physicists face. Read the review published in Computing in Science & Engineering magazine, March/April 2011 (Vol. 13, No. 2) ? 2011 IEEE, Published by the IEEE Computer Society

A First Course in Computational Physics and Object-Oriented Programming with C++ Hardback with CD-ROM

A First Course in Computational Physics and Object-Oriented Programming with C++ Hardback with CD-ROM PDF Author: David Yevick
Publisher: Cambridge University Press
ISBN: 9780521827782
Category : Computers
Languages : en
Pages : 422

Book Description
Textbook and reference work on the application of C++ in science and engineering.

A First Course in Computational Physics

A First Course in Computational Physics PDF Author: Paul L. DeVries
Publisher:
ISBN: 9780474599637
Category : FORTRAN (Computer program language)
Languages : en
Pages : 424

Book Description


A Survey of Computational Physics

A Survey of Computational Physics PDF Author: Rubin H. Landau
Publisher: Princeton University Press
ISBN: 1400841186
Category : Science
Languages : en
Pages : 688

Book Description
Computational physics is a rapidly growing subfield of computational science, in large part because computers can solve previously intractable problems or simulate natural processes that do not have analytic solutions. The next step beyond Landau's First Course in Scientific Computing and a follow-up to Landau and Páez's Computational Physics, this text presents a broad survey of key topics in computational physics for advanced undergraduates and beginning graduate students, including new discussions of visualization tools, wavelet analysis, molecular dynamics, and computational fluid dynamics. By treating science, applied mathematics, and computer science together, the book reveals how this knowledge base can be applied to a wider range of real-world problems than computational physics texts normally address. Designed for a one- or two-semester course, A Survey of Computational Physics will also interest anyone who wants a reference on or practical experience in the basics of computational physics. Accessible to advanced undergraduates Real-world problem-solving approach Java codes and applets integrated with text Companion Web site includes videos of lectures

Computational Physics

Computational Physics PDF Author: Philipp O.J. Scherer
Publisher: Springer Science & Business Media
ISBN: 3642139906
Category : Science
Languages : en
Pages : 319

Book Description
This book encapsulates the coverage for a two-semester course in computational physics. The first part introduces the basic numerical methods while omitting mathematical proofs but demonstrating the algorithms by way of numerous computer experiments. The second part specializes in simulation of classical and quantum systems with instructive examples spanning many fields in physics, from a classical rotor to a quantum bit. All program examples are realized as Java applets ready to run in your browser and do not require any programming skills.

A First Course in Scientific Computing

A First Course in Scientific Computing PDF Author: Rubin Landau
Publisher: Princeton University Press
ISBN: 1400841178
Category : Computers
Languages : en
Pages : 506

Book Description
This book offers a new approach to introductory scientific computing. It aims to make students comfortable using computers to do science, to provide them with the computational tools and knowledge they need throughout their college careers and into their professional careers, and to show how all the pieces can work together. Rubin Landau introduces the requisite mathematics and computer science in the course of realistic problems, from energy use to the building of skyscrapers to projectile motion with drag. He is attentive to how each discipline uses its own language to describe the same concepts and how computations are concrete instances of the abstract. Landau covers the basics of computation, numerical analysis, and programming from a computational science perspective. The first part of the printed book uses the problem-solving environment Maple as its context, with the same material covered on the accompanying CD as both Maple and Mathematica programs; the second part uses the compiled language Java, with equivalent materials in Fortran90 on the CD; and the final part presents an introduction to LaTeX replete with sample files. Providing the essentials of computing, with practical examples, A First Course in Scientific Computing adheres to the principle that science and engineering students learn computation best while sitting in front of a computer, book in hand, in trial-and-error mode. Not only is it an invaluable learning text and an essential reference for students of mathematics, engineering, physics, and other sciences, but it is also a consummate model for future textbooks in computational science and engineering courses. A broad spectrum of computing tools and examples that can be used throughout an academic career Practical computing aimed at solving realistic problems Both symbolic and numerical computations A multidisciplinary approach: science + math + computer science Maple and Java in the book itself; Mathematica, Fortran90, Maple and Java on the accompanying CD in an interactive workbook format

Computational Physics

Computational Physics PDF Author: Rubin H. Landau
Publisher: John Wiley & Sons
ISBN: 3527413154
Category : Science
Languages : en
Pages : 647

Book Description
The use of computation and simulation has become an essential part of the scientific process. Being able to transform a theory into an algorithm requires significant theoretical insight, detailed physical and mathematical understanding, and a working level of competency in programming. This upper-division text provides an unusually broad survey of the topics of modern computational physics from a multidisciplinary, computational science point of view. Its philosophy is rooted in learning by doing (assisted by many model programs), with new scientific materials as well as with the Python programming language. Python has become very popular, particularly for physics education and large scientific projects. It is probably the easiest programming language to learn for beginners, yet is also used for mainstream scientific computing, and has packages for excellent graphics and even symbolic manipulations. The text is designed for an upper-level undergraduate or beginning graduate course and provides the reader with the essential knowledge to understand computational tools and mathematical methods well enough to be successful. As part of the teaching of using computers to solve scientific problems, the reader is encouraged to work through a sample problem stated at the beginning of each chapter or unit, which involves studying the text, writing, debugging and running programs, visualizing the results, and the expressing in words what has been done and what can be concluded. Then there are exercises and problems at the end of each chapter for the reader to work on their own (with model programs given for that purpose).

A First Course in Mathematical Physics

A First Course in Mathematical Physics PDF Author: Colm T. Whelan
Publisher: John Wiley & Sons
ISBN: 3527687157
Category : Science
Languages : en
Pages : 336

Book Description
The book assumes next to no prior knowledge of the topic. The first part introduces the core mathematics, always in conjunction with the physical context. In the second part of the book, a series of examples showcases some of the more conceptually advanced areas of physics, the presentation of which draws on the developments in the first part. A large number of problems helps students to hone their skills in using the presented mathematical methods. Solutions to the problems are available to instructors on an associated password-protected website for lecturers.

Computational Physics

Computational Physics PDF Author: Rubin H. Landau
Publisher: Wiley-VCH
ISBN: 9783527406265
Category : Science
Languages : en
Pages : 616

Book Description
This second edition increases the universality of the previous edition by providing all its codes in the Java language, whose compiler and development kit are available for free for essentially all operating systems. In addition, the accompanying CD provides many of the same codes in Fortran 95, Fortran 77, and C, for even more universal application, as well as MPI codes for parallel applications. The book also includes new materials on trial-and-error search techniques, IEEE floating point arithmetic, probability and statistics, optimization and tuning in multiple languages, parallel computing with MPI, JAMA the Java matrix library, the solution of simultaneous nonlinear equations, cubic splines, ODE eigenvalue problems, and Java plotting programs. From the reviews of the first edition: "Landau and Paez's book would be an excellent choice for a course on computational physics which emphasizes computational methods and programming." - American Journal of Physics