Adaptive Stream Mining PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Adaptive Stream Mining PDF full book. Access full book title Adaptive Stream Mining by Albert Bifet. Download full books in PDF and EPUB format.

Adaptive Stream Mining

Adaptive Stream Mining PDF Author: Albert Bifet
Publisher: IOS Press
ISBN: 1607500906
Category : Computers
Languages : en
Pages : 224

Book Description
This book is a significant contribution to the subject of mining time-changing data streams and addresses the design of learning algorithms for this purpose. It introduces new contributions on several different aspects of the problem, identifying research opportunities and increasing the scope for applications. It also includes an in-depth study of stream mining and a theoretical analysis of proposed methods and algorithms. The first section is concerned with the use of an adaptive sliding window algorithm (ADWIN). Since this has rigorous performance guarantees, using it in place of counters or accumulators, it offers the possibility of extending such guarantees to learning and mining algorithms not initially designed for drifting data. Testing with several methods, including Naïve Bayes, clustering, decision trees and ensemble methods, is discussed as well. The second part of the book describes a formal study of connected acyclic graphs, or 'trees', from the point of view of closure-based mining, presenting efficient algorithms for subtree testing and for mining ordered and unordered frequent closed trees. Lastly, a general methodology to identify closed patterns in a data stream is outlined. This is applied to develop an incremental method, a sliding-window based method, and a method that mines closed trees adaptively from data streams. These are used to introduce classification methods for tree data streams.

Adaptive Stream Mining

Adaptive Stream Mining PDF Author: Albert Bifet
Publisher: IOS Press
ISBN: 1607500906
Category : Computers
Languages : en
Pages : 224

Book Description
This book is a significant contribution to the subject of mining time-changing data streams and addresses the design of learning algorithms for this purpose. It introduces new contributions on several different aspects of the problem, identifying research opportunities and increasing the scope for applications. It also includes an in-depth study of stream mining and a theoretical analysis of proposed methods and algorithms. The first section is concerned with the use of an adaptive sliding window algorithm (ADWIN). Since this has rigorous performance guarantees, using it in place of counters or accumulators, it offers the possibility of extending such guarantees to learning and mining algorithms not initially designed for drifting data. Testing with several methods, including Naïve Bayes, clustering, decision trees and ensemble methods, is discussed as well. The second part of the book describes a formal study of connected acyclic graphs, or 'trees', from the point of view of closure-based mining, presenting efficient algorithms for subtree testing and for mining ordered and unordered frequent closed trees. Lastly, a general methodology to identify closed patterns in a data stream is outlined. This is applied to develop an incremental method, a sliding-window based method, and a method that mines closed trees adaptively from data streams. These are used to introduce classification methods for tree data streams.

Machine Learning for Data Streams

Machine Learning for Data Streams PDF Author: Albert Bifet
Publisher: MIT Press
ISBN: 0262346052
Category : Computers
Languages : en
Pages : 255

Book Description
A hands-on approach to tasks and techniques in data stream mining and real-time analytics, with examples in MOA, a popular freely available open-source software framework. Today many information sources—including sensor networks, financial markets, social networks, and healthcare monitoring—are so-called data streams, arriving sequentially and at high speed. Analysis must take place in real time, with partial data and without the capacity to store the entire data set. This book presents algorithms and techniques used in data stream mining and real-time analytics. Taking a hands-on approach, the book demonstrates the techniques using MOA (Massive Online Analysis), a popular, freely available open-source software framework, allowing readers to try out the techniques after reading the explanations. The book first offers a brief introduction to the topic, covering big data mining, basic methodologies for mining data streams, and a simple example of MOA. More detailed discussions follow, with chapters on sketching techniques, change, classification, ensemble methods, regression, clustering, and frequent pattern mining. Most of these chapters include exercises, an MOA-based lab session, or both. Finally, the book discusses the MOA software, covering the MOA graphical user interface, the command line, use of its API, and the development of new methods within MOA. The book will be an essential reference for readers who want to use data stream mining as a tool, researchers in innovation or data stream mining, and programmers who want to create new algorithms for MOA.

Advances in Machine Learning

Advances in Machine Learning PDF Author: Zhi-Hua Zhou
Publisher: Springer
ISBN: 364205224X
Category : Computers
Languages : en
Pages : 426

Book Description
The First Asian Conference on Machine Learning (ACML 2009) was held at Nanjing, China during November 2–4, 2009.This was the ?rst edition of a series of annual conferences which aim to provide a leading international forum for researchers in machine learning and related ?elds to share their new ideas and research ?ndings. This year we received 113 submissions from 18 countries and regions in Asia, Australasia, Europe and North America. The submissions went through a r- orous double-blind reviewing process. Most submissions received four reviews, a few submissions received ?ve reviews, while only several submissions received three reviews. Each submission was handled by an Area Chair who coordinated discussions among reviewers and made recommendation on the submission. The Program Committee Chairs examined the reviews and meta-reviews to further guarantee the reliability and integrity of the reviewing process. Twenty-nine - pers were selected after this process. To ensure that important revisions required by reviewers were incorporated into the ?nal accepted papers, and to allow submissions which would have - tential after a careful revision, this year we launched a “revision double-check” process. In short, the above-mentioned 29 papers were conditionally accepted, and the authors were requested to incorporate the “important-and-must”re- sionssummarizedbyareachairsbasedonreviewers’comments.Therevised?nal version and the revision list of each conditionally accepted paper was examined by the Area Chair and Program Committee Chairs. Papers that failed to pass the examination were ?nally rejected.

Learning from Data Streams

Learning from Data Streams PDF Author: João Gama
Publisher: Springer Science & Business Media
ISBN: 3540736786
Category : Computers
Languages : en
Pages : 486

Book Description
Processing data streams has raised new research challenges over the last few years. This book provides the reader with a comprehensive overview of stream data processing, including famous prototype implementations like the Nile system and the TinyOS operating system. Applications in security, the natural sciences, and education are presented. The huge bibliography offers an excellent starting point for further reading and future research.

Knowledge Discovery from Data Streams

Knowledge Discovery from Data Streams PDF Author: Joao Gama
Publisher: CRC Press
ISBN: 1439826129
Category : Business & Economics
Languages : en
Pages : 256

Book Description
Since the beginning of the Internet age and the increased use of ubiquitous computing devices, the large volume and continuous flow of distributed data have imposed new constraints on the design of learning algorithms. Exploring how to extract knowledge structures from evolving and time-changing data, Knowledge Discovery from Data Streams presents

Adaptive and Intelligent Systems

Adaptive and Intelligent Systems PDF Author: Abdelhamid Bouchachia
Publisher: Springer Science & Business Media
ISBN: 3642238564
Category : Computers
Languages : en
Pages : 441

Book Description
This book constitutes the proceedings of the International Conference on Adaptive and Intelligent Systems, ICAIS 2011, held in Klagenfurt, Austria, in September 2011. The 36 full papers included in these proceedings together with the abstracts of 4 invited talks, were carefully reviewed and selected from 72 submissions. The contributions are organized under the following topical sections: incremental learning; adaptive system architecture; intelligent system engineering; data mining and pattern recognition; intelligent agents; and computational intelligence.

Collaborative Filtering Using Data Mining and Analysis

Collaborative Filtering Using Data Mining and Analysis PDF Author: Bhatnagar, Vishal
Publisher: IGI Global
ISBN: 1522504907
Category : Computers
Languages : en
Pages : 336

Book Description
Internet usage has become a normal and essential aspect of everyday life. Due to the immense amount of information available on the web, it has become obligatory to find ways to sift through and categorize the overload of data while removing redundant material. Collaborative Filtering Using Data Mining and Analysis evaluates the latest patterns and trending topics in the utilization of data mining tools and filtering practices. Featuring emergent research and optimization techniques in the areas of opinion mining, text mining, and sentiment analysis, as well as their various applications, this book is an essential reference source for researchers and engineers interested in collaborative filtering.

Green IT Engineering: Concepts, Models, Complex Systems Architectures

Green IT Engineering: Concepts, Models, Complex Systems Architectures PDF Author: Vyacheslav Kharchenko
Publisher: Springer
ISBN: 3319441620
Category : Technology & Engineering
Languages : en
Pages : 308

Book Description
This volume provides a comprehensive state of the art overview of a series of advanced trends and concepts that have recently been proposed in the area of green information technologies engineering as well as of design and development methodologies for models and complex systems architectures and their intelligent components. The contributions included in the volume have their roots in the authors’ presentations, and vivid discussions that have followed the presentations, at a series of workshop and seminars held within the international TEMPUS-project GreenCo project in United Kingdom, Italy, Portugal, Sweden and the Ukraine, during 2013-2015 and at the 1st - 5th Workshops on Green and Safe Computing (GreenSCom) held in Russia, Slovakia and the Ukraine. The book presents a systematic exposition of research on principles, models, components and complex systems and a description of industry- and society-oriented aspects of the green IT engineering. A chapter-oriented structure has been adopted for this book following a “vertical view” of the green IT, from hardware (CPU and FPGA) and software components to complex industrial systems. The 15 chapters of the book are grouped into five sections: (1) Methodology and Principles of Green IT Engineering for Complex Systems, (2) Green Components and Programmable Systems, (3) Green Internet Computing, Cloud and Communication Systems, (4) Modeling and Assessment of Green Computer Systems and Infrastructures, and (5) Green PLC-Based Systems for Industry Applications. The chapters provide an easy to follow, comprehensive introduction to the topics that are addressed, including the most relevant references, so that anyone interested in them can start the study by being able to easily find an introduction to the topic through these references. At the same time, all of them correspond to different aspects of the work in progress being carried out by various research groups throughout the world and, therefore, provide information on the state of the art of some of these topics, challenges and perspectives.

Business Intelligence and Performance Management

Business Intelligence and Performance Management PDF Author: Peter Rausch
Publisher: Springer Science & Business Media
ISBN: 1447148665
Category : Computers
Languages : en
Pages : 273

Book Description
During the 21st century business environments have become more complex and dynamic than ever before. Companies operate in a world of change influenced by globalisation, volatile markets, legal changes and technical progress. As a result, they have to handle growing volumes of data and therefore require fast storage, reliable data access, intelligent retrieval of information and automated decision-making mechanisms, all provided at the highest level of service quality. Successful enterprises are aware of these challenges and efficiently respond to the dynamic environment in which their business operates. Business Intelligence (BI) and Performance Management (PM) offer solutions to these challenges and provide techniques to enable effective business change. The important aspects of both topics are discussed within this state-of-the-art volume. It covers the strategic support, business applications, methodologies and technologies from the field, and explores the benefits, issues and challenges of each. Issues are analysed from many different perspectives, ranging from strategic management to data technologies, and the different subjects are complimented and illustrated by numerous examples of industrial applications. Contributions are authored by leading academics and practitioners representing various universities, research centres and companies worldwide. Their experience covers multiple disciplines and industries, including finance, construction, logistics, and public services, amongst others. Business Intelligence and Performance Management is a valuable source of reference for graduates approaching MSc or PhD programs and for professionals in industry researching in the fields of BI and PM for industrial application.

Artificial Intelligence and Soft Computing

Artificial Intelligence and Soft Computing PDF Author: Leszek Rutkowski
Publisher: Springer Nature
ISBN: 3030879860
Category : Computers
Languages : en
Pages : 536

Book Description
The two-volume set LNAI 12854 and 12855 constitutes the refereed proceedings of the 20th International Conference on Artificial Intelligence and Soft Computing, ICAISC 2021, held in Zakopane, Poland, in June 2021. Due to COVID 19, the conference was held virtually. The 89 full papers presented were carefully reviewed and selected from 195 submissions. The papers included both traditional artificial intelligence methods and soft computing techniques as well as follows: · Neural Networks and Their Applications · Fuzzy Systems and Their Applications · Evolutionary Algorithms and Their Applications · Artificial Intelligence in Modeling and Simulation · Computer Vision, Image and Speech Analysis · Data Mining · Various Problems of Artificial Intelligence · Bioinformatics, Biometrics and Medical Applications