Compressibility, Turbulence and High Speed Flow PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Compressibility, Turbulence and High Speed Flow PDF full book. Access full book title Compressibility, Turbulence and High Speed Flow by Thomas B. Gatski. Download full books in PDF and EPUB format.

Compressibility, Turbulence and High Speed Flow

Compressibility, Turbulence and High Speed Flow PDF Author: Thomas B. Gatski
Publisher: Academic Press
ISBN: 012397318X
Category : Science
Languages : en
Pages : 343

Book Description
Compressibility, Turbulence and High Speed Flow introduces the reader to the field of compressible turbulence and compressible turbulent flows across a broad speed range, through a unique complimentary treatment of both the theoretical foundations and the measurement and analysis tools currently used. The book provides the reader with the necessary background and current trends in the theoretical and experimental aspects of compressible turbulent flows and compressible turbulence. Detailed derivations of the pertinent equations describing the motion of such turbulent flows is provided and an extensive discussion of the various approaches used in predicting both free shear and wall bounded flows is presented. Experimental measurement techniques common to the compressible flow regime are introduced with particular emphasis on the unique challenges presented by high speed flows. Both experimental and numerical simulation work is supplied throughout to provide the reader with an overall perspective of current trends. An introduction to current techniques in compressible turbulent flow analysis An approach that enables engineers to identify and solve complex compressible flow challenges Prediction methodologies, including the Reynolds-averaged Navier Stokes (RANS) method, scale filtered methods and direct numerical simulation (DNS) Current strategies focusing on compressible flow control

Compressibility, Turbulence and High Speed Flow

Compressibility, Turbulence and High Speed Flow PDF Author: Thomas B. Gatski
Publisher: Academic Press
ISBN: 012397318X
Category : Science
Languages : en
Pages : 343

Book Description
Compressibility, Turbulence and High Speed Flow introduces the reader to the field of compressible turbulence and compressible turbulent flows across a broad speed range, through a unique complimentary treatment of both the theoretical foundations and the measurement and analysis tools currently used. The book provides the reader with the necessary background and current trends in the theoretical and experimental aspects of compressible turbulent flows and compressible turbulence. Detailed derivations of the pertinent equations describing the motion of such turbulent flows is provided and an extensive discussion of the various approaches used in predicting both free shear and wall bounded flows is presented. Experimental measurement techniques common to the compressible flow regime are introduced with particular emphasis on the unique challenges presented by high speed flows. Both experimental and numerical simulation work is supplied throughout to provide the reader with an overall perspective of current trends. An introduction to current techniques in compressible turbulent flow analysis An approach that enables engineers to identify and solve complex compressible flow challenges Prediction methodologies, including the Reynolds-averaged Navier Stokes (RANS) method, scale filtered methods and direct numerical simulation (DNS) Current strategies focusing on compressible flow control

Compressibility, Turbulence and High Speed Flow

Compressibility, Turbulence and High Speed Flow PDF Author: Thomas B. Gatski
Publisher: Elsevier
ISBN: 9780080559124
Category : Science
Languages : en
Pages : 296

Book Description
This book introduces the reader to the field of compressible turbulence and compressible turbulent flows across a broad speed range through a unique complimentary treatment of both the theoretical foundations and the measurement and analysis tools currently used. For the computation of turbulent compressible flows, current methods of averaging and filtering are presented so that the reader is exposed to a consistent development of applicable equation sets for both the mean or resolved fields as well as the transport equations for the turbulent stress field. For the measurement of turbulent compressible flows, current techniques ranging from hot-wire anemometry to PIV are evaluated and limitations assessed. Characterizing dynamic features of free shear flows, including jets, mixing layers and wakes, and wall-bounded flows, including shock-turbulence and shock boundary-layer interactions, obtained from computations, experiments and simulations are discussed. Describes prediction methodologies including the Reynolds-averaged Navier Stokes (RANS) method, scale filtered methods and direct numerical simulation (DNS) Presents current measurement and data analysis techniques Discusses the linkage between experimental and computational results necessary for validation of numerical predictions Meshes the varied results of computational and experimental studies in both free and wall-bounded flows to provide an overall current view of the field

Turbulent Shear Layers in Supersonic Flow

Turbulent Shear Layers in Supersonic Flow PDF Author: Alexander J. Smits
Publisher: Springer Science & Business Media
ISBN: 0387263055
Category : Science
Languages : en
Pages : 418

Book Description
A good understanding of turbulent compressible flows is essential to the design and operation of high-speed vehicles. Such flows occur, for example, in the external flow over the surfaces of supersonic aircraft, and in the internal flow through the engines. Our ability to predict the aerodynamic lift, drag, propulsion and maneuverability of high-speed vehicles is crucially dependent on our knowledge of turbulent shear layers, and our understanding of their behavior in the presence of shock waves and regions of changing pressure. Turbulent Shear Layers in Supersonic Flow provides a comprehensive introduction to the field, and helps provide a basis for future work in this area. Wherever possible we use the available experimental work, and the results from numerical simulations to illustrate and develop a physical understanding of turbulent compressible flows.

Variable Density Fluid Turbulence

Variable Density Fluid Turbulence PDF Author: P. Chassaing
Publisher: Springer Science & Business Media
ISBN: 9401700753
Category : Science
Languages : en
Pages : 387

Book Description
The first part aims at providing the physical and theoretical framework of the analysis of density variations in fully turbulent flows. Its scope is deliberately educational. In the second part, basic data on dynamical and scalar properties of variable density turbulent flows are presented and discussed, based on experimental data and/or results from direct numerical simulations. This part is rather concerned with a research audience. The last part is more directly devoted to an engineering audience and deals with prediction methods for turbulent flows of variable density fluid. Both first and second order, single point modeling are discussed, with special emphasis on the capability to include specific variable density / compressibility effects.

On the Basic Equations for the Second-Order Modeling of Compressible Turbulence

On the Basic Equations for the Second-Order Modeling of Compressible Turbulence PDF Author: National Aeronautics and Space Adm Nasa
Publisher: Independently Published
ISBN: 9781728924809
Category : Science
Languages : en
Pages : 30

Book Description
Equations for the mean and turbulent quantities for compressible turbulent flows are derived. Both the conventional Reynolds average and the mass-weighted, Favre average were employed to decompose the flow variable into a mean and a turbulent quality. These equations are to be used later in developing second order Reynolds stress models for high speed compressible flows. A few recent advances in modeling some of the terms in the equations due to compressibility effects are also summarized. Liou, W. W. and Shih, T.-H. Glenn Research Center NASA ORDER C-99066-G; RTOP 505-62-21

Turbulent Flows

Turbulent Flows PDF Author: G. Biswas
Publisher: CRC Press
ISBN: 9780849310140
Category : Technology & Engineering
Languages : en
Pages : 478

Book Description
This book allows readers to tackle the challenges of turbulent flow problems with confidence. It covers the fundamentals of turbulence, various modeling approaches, and experimental studies. The fundamentals section includes isotropic turbulence and anistropic turbulence, turbulent flow dynamics, free shear layers, turbulent boundary layers and plumes. The modeling section focuses on topics such as eddy viscosity models, standard K-E Models, Direct Numerical Stimulation, Large Eddy Simulation, and their applications. The measurement of turbulent fluctuations experiments in isothermal and stratified turbulent flows are explored in the experimental methods section. Special topics include modeling of near wall turbulent flows, compressible turbulent flows, and more.

Transitional and Turbulent Compressible Flows

Transitional and Turbulent Compressible Flows PDF Author:
Publisher:
ISBN:
Category : Compressibility
Languages : en
Pages : 236

Book Description


Advances in Compressible Turbulent Mixing

Advances in Compressible Turbulent Mixing PDF Author:
Publisher:
ISBN:
Category : Fluid dynamics
Languages : en
Pages : 638

Book Description


Turbulence in Compressible Flows

Turbulence in Compressible Flows PDF Author:
Publisher:
ISBN: 9789283610571
Category : Compressibility
Languages : en
Pages : 308

Book Description


High-Resolution Methods for Incompressible and Low-Speed Flows

High-Resolution Methods for Incompressible and Low-Speed Flows PDF Author: D. Drikakis
Publisher: Springer Science & Business Media
ISBN: 354026454X
Category : Science
Languages : en
Pages : 622

Book Description
The study of incompressible ?ows is vital to many areas of science and te- nology. This includes most of the ?uid dynamics that one ?nds in everyday life from the ?ow of air in a room to most weather phenomena. Inundertakingthesimulationofincompressible?uid?ows,oneoftentakes many issues for granted. As these ?ows become more realistic, the problems encountered become more vexing from a computational point-of-view. These range from the benign to the profound. At once, one must contend with the basic character of incompressible ?ows where sound waves have been analytically removed from the ?ow. As a consequence vortical ?ows have been analytically “preconditioned,” but the ?ow has a certain non-physical character (sound waves of in?nite velocity). At low speeds the ?ow will be deterministic and ordered, i.e., laminar. Laminar ?ows are governed by a balance between the inertial and viscous forces in the ?ow that provides the stability. Flows are often characterized by a dimensionless number known as the Reynolds number, which is the ratio of inertial to viscous forces in a ?ow. Laminar ?ows correspond to smaller Reynolds numbers. Even though laminar ?ows are organized in an orderly manner, the ?ows may exhibit instabilities and bifurcation phenomena which may eventually lead to transition and turbulence. Numerical modelling of suchphenomenarequireshighaccuracyandmostimportantlytogaingreater insight into the relationship of the numerical methods with the ?ow physics.