Fourier Analysis and Nonlinear Partial Differential Equations PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Fourier Analysis and Nonlinear Partial Differential Equations PDF full book. Access full book title Fourier Analysis and Nonlinear Partial Differential Equations by Hajer Bahouri. Download full books in PDF and EPUB format.

Fourier Analysis and Nonlinear Partial Differential Equations

Fourier Analysis and Nonlinear Partial Differential Equations PDF Author: Hajer Bahouri
Publisher: Springer Science & Business Media
ISBN: 3642168302
Category : Mathematics
Languages : en
Pages : 524

Book Description
In recent years, the Fourier analysis methods have expereinced a growing interest in the study of partial differential equations. In particular, those techniques based on the Littlewood-Paley decomposition have proved to be very efficient for the study of evolution equations. The present book aims at presenting self-contained, state- of- the- art models of those techniques with applications to different classes of partial differential equations: transport, heat, wave and Schrödinger equations. It also offers more sophisticated models originating from fluid mechanics (in particular the incompressible and compressible Navier-Stokes equations) or general relativity. It is either directed to anyone with a good undergraduate level of knowledge in analysis or useful for experts who are eager to know the benefit that one might gain from Fourier analysis when dealing with nonlinear partial differential equations.

Fourier Analysis and Nonlinear Partial Differential Equations

Fourier Analysis and Nonlinear Partial Differential Equations PDF Author: Hajer Bahouri
Publisher: Springer Science & Business Media
ISBN: 3642168302
Category : Mathematics
Languages : en
Pages : 524

Book Description
In recent years, the Fourier analysis methods have expereinced a growing interest in the study of partial differential equations. In particular, those techniques based on the Littlewood-Paley decomposition have proved to be very efficient for the study of evolution equations. The present book aims at presenting self-contained, state- of- the- art models of those techniques with applications to different classes of partial differential equations: transport, heat, wave and Schrödinger equations. It also offers more sophisticated models originating from fluid mechanics (in particular the incompressible and compressible Navier-Stokes equations) or general relativity. It is either directed to anyone with a good undergraduate level of knowledge in analysis or useful for experts who are eager to know the benefit that one might gain from Fourier analysis when dealing with nonlinear partial differential equations.

Fourier Analysis and Partial Differential Equations

Fourier Analysis and Partial Differential Equations PDF Author: Jose Garcia-Cuerva
Publisher: CRC Press
ISBN: 135108058X
Category : Mathematics
Languages : en
Pages : 336

Book Description
Contains easy access to four actual and active areas of research in Fourier Analysis and PDE Covers a wide spectrum of topics in present research Provides a complete picture of state-of-the-art methods in the field Contains 200 tables allowing the reader speedy access to precise data

Fourier Analysis and Partial Differential Equations

Fourier Analysis and Partial Differential Equations PDF Author: Iorio Júnior Iorio Jr.
Publisher: Cambridge University Press
ISBN: 9780521621168
Category : Mathematics
Languages : en
Pages : 428

Book Description
A 2001 introduction to Fourier analysis and partial differential equations; aimed at beginning graduate students.

Fourier Series in Several Variables with Applications to Partial Differential Equations

Fourier Series in Several Variables with Applications to Partial Differential Equations PDF Author: Victor Shapiro
Publisher: CRC Press
ISBN: 1439854289
Category : Mathematics
Languages : en
Pages : 352

Book Description
Fourier Series in Several Variables with Applications to Partial Differential Equations illustrates the value of Fourier series methods in solving difficult nonlinear partial differential equations (PDEs). Using these methods, the author presents results for stationary Navier-Stokes equations, nonlinear reaction-diffusion systems, and quasilinear e

Introduction to Nonlinear Dispersive Equations

Introduction to Nonlinear Dispersive Equations PDF Author: Felipe Linares
Publisher: Springer
ISBN: 1493921819
Category : Mathematics
Languages : en
Pages : 301

Book Description
This textbook introduces the well-posedness theory for initial-value problems of nonlinear, dispersive partial differential equations, with special focus on two key models, the Korteweg–de Vries equation and the nonlinear Schrödinger equation. A concise and self-contained treatment of background material (the Fourier transform, interpolation theory, Sobolev spaces, and the linear Schrödinger equation) prepares the reader to understand the main topics covered: the initial-value problem for the nonlinear Schrödinger equation and the generalized Korteweg–de Vries equation, properties of their solutions, and a survey of general classes of nonlinear dispersive equations of physical and mathematical significance. Each chapter ends with an expert account of recent developments and open problems, as well as exercises. The final chapter gives a detailed exposition of local well-posedness for the nonlinear Schrödinger equation, taking the reader to the forefront of recent research. The second edition of Introduction to Nonlinear Dispersive Equations builds upon the success of the first edition by the addition of updated material on the main topics, an expanded bibliography, and new exercises. Assuming only basic knowledge of complex analysis and integration theory, this book will enable graduate students and researchers to enter this actively developing field.

Nonlinear Dispersive Equations

Nonlinear Dispersive Equations PDF Author: Terence Tao
Publisher: American Mathematical Soc.
ISBN: 0821841432
Category : Differential equations, Partial
Languages : en
Pages : 394

Book Description
"Starting only with a basic knowledge of graduate real analysis and Fourier analysis, the text first presents basic nonlinear tools such as the bootstrap method and perturbation theory in the simpler context of nonlinear ODE, then introduces the harmonic analysis and geometric tools used to control linear dispersive PDE. These methods are then combined to study four model nonlinear dispersive equations. Through extensive exercises, diagrams, and informal discussion, the book gives a rigorous theoretical treatment of the material, the real-world intuition and heuristics that underlie the subject, as well as mentioning connections with other areas of PDE, harmonic analysis, and dynamical systems.".

Fourier Analysis

Fourier Analysis PDF Author: Michael Ruzhansky
Publisher: Springer Science & Business Media
ISBN: 3319025503
Category : Mathematics
Languages : en
Pages : 415

Book Description
This book is devoted to the broad field of Fourier analysis and its applications to several areas of mathematics, including problems in the theory of pseudo-differential operators, partial differential equations, and time-frequency analysis. It is based on lectures given at the international conference “Fourier Analysis and Pseudo-Differential Operators,” June 25–30, 2012, at Aalto University, Finland. This collection of 20 refereed articles is based on selected talks and presents the latest advances in the field. The conference was a satellite meeting of the 6th European Congress of Mathematics, which took place in Krakow in July 2012; it was also the 6th meeting in the series “Fourier Analysis and Partial Differential Equations.”

Nonlinear Partial Differential Equations for Scientists and Engineers

Nonlinear Partial Differential Equations for Scientists and Engineers PDF Author: Lokenath Debnath
Publisher: Springer Science & Business Media
ISBN: 0817644180
Category : Mathematics
Languages : en
Pages : 738

Book Description
This expanded, revised edition is a thorough and systematic treatment of linear and nonlinear partial differential equations and their varied applications. It contains updated modern examples and applications from diverse fields. Methods and properties of solutions, along with their physical significance, make the book useful for a diverse readership including graduates, researchers, and professionals in mathematics, physics and engineering.

Ordinary and Partial Differential Equations

Ordinary and Partial Differential Equations PDF Author: Ravi P. Agarwal
Publisher: Springer Science & Business Media
ISBN: 0387791469
Category : Mathematics
Languages : en
Pages : 422

Book Description
In this undergraduate/graduate textbook, the authors introduce ODEs and PDEs through 50 class-tested lectures. Mathematical concepts are explained with clarity and rigor, using fully worked-out examples and helpful illustrations. Exercises are provided at the end of each chapter for practice. The treatment of ODEs is developed in conjunction with PDEs and is aimed mainly towards applications. The book covers important applications-oriented topics such as solutions of ODEs in form of power series, special functions, Bessel functions, hypergeometric functions, orthogonal functions and polynomials, Legendre, Chebyshev, Hermite, and Laguerre polynomials, theory of Fourier series. Undergraduate and graduate students in mathematics, physics and engineering will benefit from this book. The book assumes familiarity with calculus.

Fourier Series and Numerical Methods for Partial Differential Equations

Fourier Series and Numerical Methods for Partial Differential Equations PDF Author: Richard Bernatz
Publisher: John Wiley & Sons
ISBN: 0470651377
Category : Mathematics
Languages : en
Pages : 336

Book Description
The importance of partial differential equations (PDEs) in modeling phenomena in engineering as well as in the physical, natural, and social sciences is well known by students and practitioners in these fields. Striking a balance between theory and applications, Fourier Series and Numerical Methods for Partial Differential Equations presents an introduction to the analytical and numerical methods that are essential for working with partial differential equations. Combining methodologies from calculus, introductory linear algebra, and ordinary differential equations (ODEs), the book strengthens and extends readers' knowledge of the power of linear spaces and linear transformations for purposes of understanding and solving a wide range of PDEs. The book begins with an introduction to the general terminology and topics related to PDEs, including the notion of initial and boundary value problems and also various solution techniques. Subsequent chapters explore: The solution process for Sturm-Liouville boundary value ODE problems and a Fourier series representation of the solution of initial boundary value problems in PDEs The concept of completeness, which introduces readers to Hilbert spaces The application of Laplace transforms and Duhamel's theorem to solve time-dependent boundary conditions The finite element method, using finite dimensional subspaces The finite analytic method with applications of the Fourier series methodology to linear version of non-linear PDEs Throughout the book, the author incorporates his own class-tested material, ensuring an accessible and easy-to-follow presentation that helps readers connect presented objectives with relevant applications to their own work. Maple is used throughout to solve many exercises, and a related Web site features Maple worksheets for readers to use when working with the book's one- and multi-dimensional problems. Fourier Series and Numerical Methods for Partial Differential Equations is an ideal book for courses on applied mathematics and partial differential equations at the upper-undergraduate and graduate levels. It is also a reliable resource for researchers and practitioners in the fields of mathematics, science, and engineering who work with mathematical modeling of physical phenomena, including diffusion and wave aspects.