Fundamentals of Numerical Mathematics for Physicists and Engineers PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Fundamentals of Numerical Mathematics for Physicists and Engineers PDF full book. Access full book title Fundamentals of Numerical Mathematics for Physicists and Engineers by Alvaro Meseguer. Download full books in PDF and EPUB format.

Fundamentals of Numerical Mathematics for Physicists and Engineers

Fundamentals of Numerical Mathematics for Physicists and Engineers PDF Author: Alvaro Meseguer
Publisher: John Wiley & Sons
ISBN: 1119425751
Category : Mathematics
Languages : en
Pages : 400

Book Description
Introduces the fundamentals of numerical mathematics and illustrates its applications to a wide variety of disciplines in physics and engineering Applying numerical mathematics to solve scientific problems, this book helps readers understand the mathematical and algorithmic elements that lie beneath numerical and computational methodologies in order to determine the suitability of certain techniques for solving a given problem. It also contains examples related to problems arising in classical mechanics, thermodynamics, electricity, and quantum physics. Fundamentals of Numerical Mathematics for Physicists and Engineers is presented in two parts. Part I addresses the root finding of univariate transcendental equations, polynomial interpolation, numerical differentiation, and numerical integration. Part II examines slightly more advanced topics such as introductory numerical linear algebra, parameter dependent systems of nonlinear equations, numerical Fourier analysis, and ordinary differential equations (initial value problems and univariate boundary value problems). Chapters cover: Newton’s method, Lebesgue constants, conditioning, barycentric interpolatory formula, Clenshaw-Curtis quadrature, GMRES matrix-free Krylov linear solvers, homotopy (numerical continuation), differentiation matrices for boundary value problems, Runge-Kutta and linear multistep formulas for initial value problems. Each section concludes with Matlab hands-on computer practicals and problem and exercise sets. This book: Provides a modern perspective of numerical mathematics by introducing top-notch techniques currently used by numerical analysts Contains two parts, each of which has been designed as a one-semester course Includes computational practicals in Matlab (with solutions) at the end of each section for the instructor to monitor the student's progress through potential exams or short projects Contains problem and exercise sets (also with solutions) at the end of each section Fundamentals of Numerical Mathematics for Physicists and Engineers is an excellent book for advanced undergraduate or graduate students in physics, mathematics, or engineering. It will also benefit students in other scientific fields in which numerical methods may be required such as chemistry or biology.

Fundamentals of Numerical Mathematics for Physicists and Engineers

Fundamentals of Numerical Mathematics for Physicists and Engineers PDF Author: Alvaro Meseguer
Publisher: John Wiley & Sons
ISBN: 1119425751
Category : Mathematics
Languages : en
Pages : 400

Book Description
Introduces the fundamentals of numerical mathematics and illustrates its applications to a wide variety of disciplines in physics and engineering Applying numerical mathematics to solve scientific problems, this book helps readers understand the mathematical and algorithmic elements that lie beneath numerical and computational methodologies in order to determine the suitability of certain techniques for solving a given problem. It also contains examples related to problems arising in classical mechanics, thermodynamics, electricity, and quantum physics. Fundamentals of Numerical Mathematics for Physicists and Engineers is presented in two parts. Part I addresses the root finding of univariate transcendental equations, polynomial interpolation, numerical differentiation, and numerical integration. Part II examines slightly more advanced topics such as introductory numerical linear algebra, parameter dependent systems of nonlinear equations, numerical Fourier analysis, and ordinary differential equations (initial value problems and univariate boundary value problems). Chapters cover: Newton’s method, Lebesgue constants, conditioning, barycentric interpolatory formula, Clenshaw-Curtis quadrature, GMRES matrix-free Krylov linear solvers, homotopy (numerical continuation), differentiation matrices for boundary value problems, Runge-Kutta and linear multistep formulas for initial value problems. Each section concludes with Matlab hands-on computer practicals and problem and exercise sets. This book: Provides a modern perspective of numerical mathematics by introducing top-notch techniques currently used by numerical analysts Contains two parts, each of which has been designed as a one-semester course Includes computational practicals in Matlab (with solutions) at the end of each section for the instructor to monitor the student's progress through potential exams or short projects Contains problem and exercise sets (also with solutions) at the end of each section Fundamentals of Numerical Mathematics for Physicists and Engineers is an excellent book for advanced undergraduate or graduate students in physics, mathematics, or engineering. It will also benefit students in other scientific fields in which numerical methods may be required such as chemistry or biology.

Fundamentals of Numerical Mathematics for Physicists and Engineers

Fundamentals of Numerical Mathematics for Physicists and Engineers PDF Author: Alvaro Meseguer
Publisher: John Wiley & Sons
ISBN: 1119425719
Category : Mathematics
Languages : en
Pages : 400

Book Description
Introduces the fundamentals of numerical mathematics and illustrates its applications to a wide variety of disciplines in physics and engineering Applying numerical mathematics to solve scientific problems, this book helps readers understand the mathematical and algorithmic elements that lie beneath numerical and computational methodologies in order to determine the suitability of certain techniques for solving a given problem. It also contains examples related to problems arising in classical mechanics, thermodynamics, electricity, and quantum physics. Fundamentals of Numerical Mathematics for Physicists and Engineers is presented in two parts. Part I addresses the root finding of univariate transcendental equations, polynomial interpolation, numerical differentiation, and numerical integration. Part II examines slightly more advanced topics such as introductory numerical linear algebra, parameter dependent systems of nonlinear equations, numerical Fourier analysis, and ordinary differential equations (initial value problems and univariate boundary value problems). Chapters cover: Newton’s method, Lebesgue constants, conditioning, barycentric interpolatory formula, Clenshaw-Curtis quadrature, GMRES matrix-free Krylov linear solvers, homotopy (numerical continuation), differentiation matrices for boundary value problems, Runge-Kutta and linear multistep formulas for initial value problems. Each section concludes with Matlab hands-on computer practicals and problem and exercise sets. This book: Provides a modern perspective of numerical mathematics by introducing top-notch techniques currently used by numerical analysts Contains two parts, each of which has been designed as a one-semester course Includes computational practicals in Matlab (with solutions) at the end of each section for the instructor to monitor the student's progress through potential exams or short projects Contains problem and exercise sets (also with solutions) at the end of each section Fundamentals of Numerical Mathematics for Physicists and Engineers is an excellent book for advanced undergraduate or graduate students in physics, mathematics, or engineering. It will also benefit students in other scientific fields in which numerical methods may be required such as chemistry or biology.

Mathematical Methods for Physicists and Engineers

Mathematical Methods for Physicists and Engineers PDF Author: Royal Eugene Collins
Publisher: Courier Corporation
ISBN: 0486150127
Category : Science
Languages : en
Pages : 400

Book Description
Practical text focuses on fundamental applied math needed to deal with physics and engineering problems: elementary vector calculus, special functions of mathematical physics, calculus of variations, much more. 1968 edition.

Fundamental Math and Physics for Scientists and Engineers

Fundamental Math and Physics for Scientists and Engineers PDF Author: David Yevick
Publisher: John Wiley & Sons
ISBN: 111897980X
Category : Science
Languages : en
Pages : 464

Book Description
Provides a concise overview of the core undergraduate physics and applied mathematics curriculum for students and practitioners of science and engineering Fundamental Math and Physics for Scientists and Engineers summarizes college and university level physics together with the mathematics frequently encountered in engineering and physics calculations. The presentation provides straightforward, coherent explanations of underlying concepts emphasizing essential formulas, derivations, examples, and computer programs. Content that should be thoroughly mastered and memorized is clearly identified while unnecessary technical details are omitted. Fundamental Math and Physics for Scientists and Engineers is an ideal resource for undergraduate science and engineering students and practitioners, students reviewing for the GRE and graduate-level comprehensive exams, and general readers seeking to improve their comprehension of undergraduate physics. Covers topics frequently encountered in undergraduate physics, in particular those appearing in the Physics GRE subject examination Reviews relevant areas of undergraduate applied mathematics, with an overview chapter on scientific programming Provides simple, concise explanations and illustrations of underlying concepts Succinct yet comprehensive, Fundamental Math and Physics for Scientists and Engineers constitutes a reference for science and engineering students, practitioners and non-practitioners alike.

Discrete Numerical Methods in Physics and Engineering

Discrete Numerical Methods in Physics and Engineering PDF Author: Greenspan
Publisher: Academic Press
ISBN: 0080956165
Category : Computers
Languages : en
Pages : 311

Book Description
Discrete Numerical Methods in Physics and Engineering

Fundamentals of Engineering Numerical Analysis

Fundamentals of Engineering Numerical Analysis PDF Author: Parviz Moin
Publisher: Cambridge University Press
ISBN: 0521711231
Category : Mathematics
Languages : en
Pages : 257

Book Description
In this work, Parviz Moin introduces numerical methods and shows how to develop, analyse, and use them. A thorough and practical text, it is intended as a first course in numerical analysis.

Applied Mathematics for Engineers and Physicists

Applied Mathematics for Engineers and Physicists PDF Author: Louis A. Pipes
Publisher: Courier Corporation
ISBN: 0486794997
Category : Mathematics
Languages : en
Pages : 1043

Book Description
Suitable for advanced courses in applied mathematics, this text covers analysis of lumped parameter systems, distributed parameter systems, and important areas of applied mathematics. Answers to selected problems. 1970 edition.

Mathematics of Physics and Engineering

Mathematics of Physics and Engineering PDF Author: Edward K. Blum
Publisher: World Scientific
ISBN: 981256621X
Category : Mathematics
Languages : en
Pages : 500

Book Description
Aimed at scientists and engineers, this book is an exciting intellectual journey through the mathematical worlds of Euclid, Newton, Maxwell, Einstein, and Schrodinger-Dirac.While similar books present the required mathematics in a piecemeal manner with tangential references to the relevant physics and engineering, this textbook serves the interdisciplinary needs of engineers, scientists and applied mathematicians by unifying the mathematics and physics into a single systematic body of knowledge but preserving the rigorous logical development of the mathematics.The authors take an unconventional approach by integrating the mathematics with its motivating physical phenomena and, conversely, by showing how the mathematical models predict new physical phenomena.

Numerical Time-Dependent Partial Differential Equations for Scientists and Engineers

Numerical Time-Dependent Partial Differential Equations for Scientists and Engineers PDF Author: Moysey Brio
Publisher: Academic Press
ISBN: 9780080917047
Category : Mathematics
Languages : en
Pages : 312

Book Description
It is the first text that in addition to standard convergence theory treats other necessary ingredients for successful numerical simulations of physical systems encountered by every practitioner. The book is aimed at users with interests ranging from application modeling to numerical analysis and scientific software development. It is strongly influenced by the authors research in in space physics, electrical and optical engineering, applied mathematics, numerical analysis and professional software development. The material is based on a year-long graduate course taught at the University of Arizona since 1989. The book covers the first two-semesters of a three semester series. The second semester is based on a semester-long project, while the third semester requirement consists of a particular methods course in specific disciplines like computational fluid dynamics, finite element method in mechanical engineering, computational physics, biology, chemistry, photonics, etc. The first three chapters focus on basic properties of partial differential equations, including analysis of the dispersion relation, symmetries, particular solutions and instabilities of the PDEs; methods of discretization and convergence theory for initial value problems. The goal is to progress from observations of simple numerical artifacts like diffusion, damping, dispersion, and anisotropies to their analysis and management technique, as it is not always possible to completely eliminate them. In the second part of the book we cover topics for which there are only sporadic theoretical results, while they are an integral part and often the most important part for successful numerical simulation. We adopt a more heuristic and practical approach using numerical methods of investigation and validation. The aim is teach students subtle key issues in order to separate physics from numerics. The following topics are addressed: Implementation of transparent and absorbing boundary conditions; Practical stability analysis in the presence of the boundaries and interfaces; Treatment of problems with different temporal/spatial scales either explicit or implicit; preservation of symmetries and additional constraints; physical regularization of singularities; resolution enhancement using adaptive mesh refinement and moving meshes. Self contained presentation of key issues in successful numerical simulation Accessible to scientists and engineers with diverse background Provides analysis of the dispersion relation, symmetries, particular solutions and instabilities of the partial differential equations

Mathematical Methods in Physics and Engineering

Mathematical Methods in Physics and Engineering PDF Author: John W. Dettman
Publisher: Courier Corporation
ISBN: 0486169367
Category : Science
Languages : en
Pages : 450

Book Description
Intended for college-level physics, engineering, or mathematics students, this volume offers an algebraically based approach to various topics in applied math. It is accessible to undergraduates with a good course in calculus which includes infinite series and uniform convergence. Exercises follow each chapter to test the student's grasp of the material; however, the author has also included exercises that extend the results to new situations and lay the groundwork for new concepts to be introduced later. A list of references for further reading will be found at the end of each chapter. For this second revised edition, Professor Dettman included a new section on generalized functions to help explain the use of the Dirac delta function in connection with Green's functions. In addition, a new approach to series solutions of ordinary differential equations has made the treatment independent of complex variable theory. This means that the first six chapters can be grasped without prior knowledge of complex variables. However, since Chapter 8 depends heavily on analytic functions of a complex variable, a new Chapter 7 on analytic function theory has been written.