Microfluidics and BioMEMS Applications PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Microfluidics and BioMEMS Applications PDF full book. Access full book title Microfluidics and BioMEMS Applications by Francis E. H. Tay. Download full books in PDF and EPUB format.

Microfluidics and BioMEMS Applications

Microfluidics and BioMEMS Applications PDF Author: Francis E. H. Tay
Publisher: Springer Science & Business Media
ISBN: 1475735340
Category : Technology & Engineering
Languages : en
Pages : 346

Book Description
Microfluidics and BioMEMS Applications central idea is on microfluidics, a relatively new research field which finds its niche in biomedical devices, especially on lab-on-a-chip and related products. Being the essential component in providing driving fluidic flows, an example of micropump is chosen to illustrate a complete cycle in development of microfluidic devices which include literature review, designing and modelling, fabrication and testing. A few articles are included to demonstrate the idea of tackling this research problem, and they cover the main development scope discussed earlier as well as other advanced modelling schemes for microfluidics and beyond. Scientists and students working in the areas of MEMS and microfluidics will benefit from this book, which may serve both communities as both a reference monograph and a textbook for courses in numerical simulation, and design and development of microfluidic devices.

Microfluidics and BioMEMS Applications

Microfluidics and BioMEMS Applications PDF Author: Francis E. H. Tay
Publisher: Springer Science & Business Media
ISBN: 1475735340
Category : Technology & Engineering
Languages : en
Pages : 346

Book Description
Microfluidics and BioMEMS Applications central idea is on microfluidics, a relatively new research field which finds its niche in biomedical devices, especially on lab-on-a-chip and related products. Being the essential component in providing driving fluidic flows, an example of micropump is chosen to illustrate a complete cycle in development of microfluidic devices which include literature review, designing and modelling, fabrication and testing. A few articles are included to demonstrate the idea of tackling this research problem, and they cover the main development scope discussed earlier as well as other advanced modelling schemes for microfluidics and beyond. Scientists and students working in the areas of MEMS and microfluidics will benefit from this book, which may serve both communities as both a reference monograph and a textbook for courses in numerical simulation, and design and development of microfluidic devices.

Microfluidics and BioMEMS

Microfluidics and BioMEMS PDF Author: Tuhin Subhra Santra
Publisher:
ISBN: 9789814800853
Category :
Languages : en
Pages : 0

Book Description
This book compiles cutting-edge research on cell manipulation, separation, and analysis using microfluidics and bio-MEMS. It illustrates the use of micro-robots for biomedical applications, vascularized microfluidic organs-on-a-chip and their applications, as well as DNA gene microarray biochips and their applications. It also elaborates on neuronal cell activity in microfluidic compartments, microvasculature and microarray gene patterning, different physical methods for drug delivery and analysis, micro-/nanoparticle preparation and separation in a micro-/nanofluidic environment, and the potential biomedical applications of micro-/nanoparticles. This book can be used by academic researchers, especially those involved in biomicrofluidics and bio-MEMS, and undergraduate- and graduate-level students of bio-MEMS/bio-NEMS, biomicrofluidics, biomicrofabricatios, micro-/nanofluidics, biophysics, single-cell analysis, bionanotechnology, drug delivery systems, and biomedical microdevices.

Biomedical Applications of Microfluidic Devices

Biomedical Applications of Microfluidic Devices PDF Author: Michael R. Hamblin
Publisher: Academic Press
ISBN: 0128187921
Category : Technology & Engineering
Languages : en
Pages : 352

Book Description
Biomedical Applications of Microfluidic Devices introduces the subject of microfluidics and covers the basic principles of design and synthesis of actual microchannels. The book then explores how the devices are coupled to signal read-outs and calibrated, including applications of microfluidics in areas such as tissue engineering, organ-on-a-chip devices, pathogen identification, and drug/gene delivery. This book covers high-impact fields (microarrays, organ-on-a-chip, pathogen detection, cancer research, drug delivery systems, gene delivery, and tissue engineering) and shows how microfluidics is playing a key role in these areas, which are big drivers in biomedical engineering research. This book addresses the fundamental concepts and fabrication methods of microfluidic systems for those who want to start working in the area or who want to learn about the latest advances being made. The subjects covered are also an asset to companies working in this field that need to understand the current state-of-the-art. The book is ideal for courses on microfluidics, biosensors, drug targeting, and BioMEMs, and as a reference for PhD students. The book covers the emerging and most promising areas of biomedical applications of microfluidic devices in a single place and offers a vision of the future. Covers basic principles and design of microfluidics devices Explores biomedical applications to areas such as tissue engineering, organ-on-a-chip, pathogen identification, and drug and gene delivery Includes chemical applications in organic and inorganic chemistry Serves as an ideal text for courses on microfluidics, biosensors, drug targeting, and BioMEMs, as well as a reference for PhD students

Bio-MEMS

Bio-MEMS PDF Author: Wanjun Wang
Publisher: CRC Press
ISBN: 1420018671
Category : Technology & Engineering
Languages : en
Pages : 488

Book Description
Microelectromechanical systems (MEMS) are evolving into highly integrated technologies for a variety of application areas. Add the biological dimension to the mix and a host of new problems and issues arise that require a broad understanding of aspects from basic, materials, and medical sciences in addition to engineering. Collecting the efforts of renowned leaders in each of these fields, BioMEMS: Technologies and Applications presents the first wide-reaching survey of the design and application of MEMS technologies for use in biological and medical areas. This book considers both the unique characteristics of biological samples and the challenges of microscale engineering. Divided into three main sections, it first examines fabrication technologies using non-silicon processes, which use materials that are appropriate for medical/biological analyses. These include UV lithography, LIGA, nanoimprinting, injection molding, and hot-embossing. Attention then shifts to microfluidic components and sensing technologies for sample preparation, delivery, and analysis. The final section outlines various applications and systems at the leading edge of BioMEMS technology in a variety of areas such as genomics, drug delivery, and proteomics. Laying a cross-disciplinary foundation for further development, BioMEMS: Technologies and Applications provides engineers with an understanding of the biological challenges and biological scientists with an understanding of the engineering challenges of this burgeoning technology.

Microfluidics and Nanotechnology

Microfluidics and Nanotechnology PDF Author: Eric Lagally
Publisher: CRC Press
ISBN: 1466594918
Category : Medical
Languages : en
Pages : 290

Book Description
An increasing number of technologies are being used to detect minute quantities of biomolecules and cells. However, it can be difficult to determine which technologies show the most promise for high-sensitivity and low-limit detection in different applications. Microfluidics and Nanotechnology: Biosensing to the Single Molecule Limit details proven approaches for the detection of single cells and even single molecules—approaches employed by the world’s foremost microfluidics and nanotechnology laboratories. While similar books concentrate only on microfluidics or nanotechnology, this book focuses on the combination of soft materials (elastomers and other polymers) with hard materials (semiconductors, metals, and glass) to form integrated detection systems for biological and chemical targets. It explores physical and chemical—as well as contact and noncontact—detection methods, using case studies to demonstrate system capabilities. Presenting a snapshot of the current state of the art, the text: Explains the theory behind different detection techniques, from mechanical resonators for detecting cell density to fiber-optic methods for detecting DNA hybridization, and beyond Examines microfluidic advances, including droplet microfluidics, digital microfluidics for manipulating droplets on the microscale, and more Highlights an array of technologies to allow for a comparison of the fundamental advantages and challenges of each, as well as an appreciation of the power of leveraging scalability and integration to achieve sensitivity at low cost Microfluidics and Nanotechnology: Biosensing to the Single Molecule Limit not only serves as a quick reference for the latest achievements in biochemical detection at the single-cell and single-molecule levels, but also provides researchers with inspiration for further innovation and expansion of the field.

Introduction to BioMEMS

Introduction to BioMEMS PDF Author: Albert Folch
Publisher: CRC Press
ISBN: 1466509384
Category : Medical
Languages : en
Pages : 528

Book Description
The entire scope of the BioMEMS field-at your fingertipsHelping to educate the new generation of engineers and biologists, Introduction to BioMEMS explains how certain problems in biology and medicine benefit from and often require the miniaturization of devices. The book covers the whole breadth of this dynamic field, including classical microfabr

Microfluidic Cell Culture Systems

Microfluidic Cell Culture Systems PDF Author: Jeffrey T Borenstein
Publisher: Elsevier
ISBN: 0128136723
Category : Science
Languages : en
Pages : 396

Book Description
Techniques for microfabricating intricate microfluidic structures that mimic the microenvironment of tissues and organs, combined with the development of biomaterials with carefully engineered surface properties, have enabled new paradigms in and cell culture-based models for human diseases. The dimensions of surface features and fluidic channels made accessible by these techniques are well-suited to the size scale of biological cells. Microfluidic Cell Culture Systems applies design and experimental techniques used in in microfluidics, and cell culture technologies to organ-on-chip systems. This book is intended to serve as a professional reference, providing a practical guide to design and fabrication of microfluidic systems and biomaterials for use in cell culture systems and human organ models. The book covers topics ranging from academic first principles of microfluidic design, to clinical translation strategies for cell culture protocols. The goal is to help professionals coming from an engineering background to adapt their expertise for use in cell culture and organ models applications, and likewise to help biologists to design and employ microfluidic technologies in their cell culture systems. This 2nd edition contains new material that strengthens the focus on in vitro models useful for drug discovery and development. One new chapter reviews liver organ models from an industry perspective, while others cover new technologies for scaling these models and for multi-organ systems. Other new chapters highlight the development of organ models and systems for specific applications in disease modeling and drug safety. Previous chapters have been revised to reflect the latest advances. Provides design and operation methodology for microfluidic and microfabricated materials and devices for organ-on-chip disease and safety models. This is a rapidly expanding field that will continue to grow along with advances in cell biology and microfluidics technologies. Comprehensively covers strategies and techniques ranging from academic first principles to industrial scale-up approaches. Readers will gain insight into cell-material interactions, microfluidic flow, and design principles. Offers three fundamental types of information: 1) design principles, 2) operation techniques, and 3) background information/perspectives. The book is carefully designed to strike a balance between these three areas, so it will be of use to a broad range of readers with different technical interests and educational levels.

BioMEMS

BioMEMS PDF Author: Samira Hosseini
Publisher: Springer Nature
ISBN: 9811563829
Category : Science
Languages : en
Pages : 186

Book Description
This book highlights the latest advances in bioMEMS for biosensing applications. It comprehensively reviews different detection methods, including colorimetric, fluorescence, luminescence, bioluminescence, chemiluminescence, biochemiluminescence, and electrochemiluminescence, and presents various bioMEMS for each, together with recent examples. The book also offers an overview of the history of BioMEMS and the design and manufacture of the first bioMEMS-based devices.

Microfluidics and BioMEMS

Microfluidics and BioMEMS PDF Author: Carlos H. Mastrangelo
Publisher: SPIE-International Society for Optical Engineering
ISBN: 9780819442888
Category : Science
Languages : en
Pages : 310

Book Description


Mems for Biomedical Applications

Mems for Biomedical Applications PDF Author: Shekhar Bhansali
Publisher: Elsevier
ISBN: 0857096273
Category : Technology & Engineering
Languages : en
Pages : 512

Book Description
The application of Micro Electro Mechanical Systems (MEMS) in the biomedical field is leading to a new generation of medical devices. MEMS for biomedical applications reviews the wealth of recent research on fabrication technologies and applications of this exciting technology. The book is divided into four parts: Part one introduces the fundamentals of MEMS for biomedical applications, exploring the microfabrication of polymers and reviewing sensor and actuator mechanisms. Part two describes applications of MEMS for biomedical sensing and diagnostic applications. MEMS for in vivo sensing and electrical impedance spectroscopy are investigated, along with ultrasonic transducers, and lab-on-chip devices. MEMS for tissue engineering and clinical applications are the focus of part three, which considers cell culture and tissue scaffolding devices, BioMEMS for drug delivery and minimally invasive medical procedures. Finally, part four reviews emerging biomedical applications of MEMS, from implantable neuroprobes and ocular implants to cellular microinjection and hybrid MEMS. With its distinguished editors and international team of expert contributors, MEMS for biomedical applications provides an authoritative review for scientists and manufacturers involved in the design and development of medical devices as well as clinicians using this important technology. Reviews the wealth of recent research on fabrication technologies and applications of Micro Electro Mechanical Systems (MEMS) in the biomedical field Introduces the fundamentals of MEMS for biomedical applications, exploring the microfabrication of polymers and reviewing sensor and actuator mechanisms Considers MEMS for biomedical sensing and diagnostic applications, along with MEMS for in vivo sensing and electrical impedance spectroscopy