Quantum Computing Compact PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Quantum Computing Compact PDF full book. Access full book title Quantum Computing Compact by Bettina Just. Download full books in PDF and EPUB format.

Quantum Computing Compact

Quantum Computing Compact PDF Author: Bettina Just
Publisher: Springer Nature
ISBN: 3662650088
Category : Mathematics
Languages : en
Pages : 107

Book Description
What is the phenomenon of quantum entanglement? If you read popular science literature, there is talk of socks that are red and blue at the same time, but monochromatic - how is that supposed to work? If you read scientific literature, you have to have knowledge of functional analysis. This book vividly builds the bridge between the experiments that led to quantum entanglement and the algorithm for teleportation, assuming only an elementary knowledge of mathematics.

Quantum Computing Compact

Quantum Computing Compact PDF Author: Bettina Just
Publisher: Springer Nature
ISBN: 3662650088
Category : Mathematics
Languages : en
Pages : 107

Book Description
What is the phenomenon of quantum entanglement? If you read popular science literature, there is talk of socks that are red and blue at the same time, but monochromatic - how is that supposed to work? If you read scientific literature, you have to have knowledge of functional analysis. This book vividly builds the bridge between the experiments that led to quantum entanglement and the algorithm for teleportation, assuming only an elementary knowledge of mathematics.

Compact Representations for the Design of Quantum Logic

Compact Representations for the Design of Quantum Logic PDF Author: Philipp Niemann
Publisher: Springer
ISBN: 331963724X
Category : Computers
Languages : en
Pages : 125

Book Description
This book discusses modern approaches and challenges of computer-aided design (CAD) of quantum circuits with a view to providing compact representations of quantum functionality. Focusing on the issue of quantum functionality, it presents Quantum Multiple-Valued Decision Diagrams (QMDDs – a means of compactly and efficiently representing and manipulating quantum logic. For future quantum computers, going well beyond the size of present-day prototypes, the manual design of quantum circuits that realize a given (quantum) functionality on these devices is no longer an option. In order to keep up with the technological advances, methods need to be provided which, similar to the design and synthesis of conventional circuits, automatically generate a circuit description of the desired functionality. To this end, an efficient representation of the desired quantum functionality is of the essence. While straightforward representations are restricted due to their (exponentially) large matrix descriptions and other decision diagram-like structures for quantum logic suffer from not comprehensively supporting typical characteristics, QMDDs employ a decomposition scheme that more naturally models quantum systems. As a result, QMDDs explicitly support quantum-mechanical effects like phase shifts and are able to take more advantage of corresponding redundancies, thereby allowing a very compact representation of relevant quantum functionality composed of dozens of qubits. This provides the basis for the development of sophisticated design methods as shown for quantum circuit synthesis and verification.

Quantum Computing

Quantum Computing PDF Author: Brian Clegg
Publisher: Icon Books
ISBN: 178578708X
Category : Science
Languages : en
Pages : 177

Book Description
The ultimate non-technical guide to the fast-developing world of quantum computing Computer technology has improved exponentially over the last 50 years. But the headroom for bigger and better electronic solutions is running out. Our best hope is to engage the power of quantum physics. 'Quantum algorithms' had already been written long before hardware was built. These would enable, for example, a quantum computer to exponentially speed up an information search, or to crack the mathematical trick behind internet security. However, making a quantum computer is incredibly difficult. Despite hundreds of laboratories around the world working on them, we are only just seeing them come close to 'supremacy' where they can outperform a traditional computer. In this approachable introduction, Brian Clegg explains algorithms and their quantum counterparts, explores the physical building blocks and quantum weirdness necessary to make a quantum computer, and uncovers the capabilities of the current generation of machines.

Quantum Computing in Practice with Qiskit® and IBM Quantum Experience®

Quantum Computing in Practice with Qiskit® and IBM Quantum Experience® PDF Author: Hassi Norlén
Publisher: Packt Publishing Ltd
ISBN: 1838821031
Category : Computers
Languages : en
Pages : 409

Book Description
Understand the nuances of programming traditional quantum computers and solve the challenges of the future while building and executing quantum programs on IBM Quantum hardware and simulators Key FeaturesWork your way up from writing a simple quantum program to programming complex quantum algorithmsExplore the probabilistic nature of qubits by performing quantum coin tosses and using random number generatorsDelve into quantum algorithms and their practical applications in various domainsBook Description IBM Quantum Experience® is a leading platform for programming quantum computers and implementing quantum solutions directly on the cloud. This book will help you get up to speed with programming quantum computers and provide solutions to the most common problems and challenges. You’ll start with a high-level overview of IBM Quantum Experience® and Qiskit®, where you will perform the installation while writing some basic quantum programs. This introduction puts less emphasis on the theoretical framework and more emphasis on recent developments such as Shor’s algorithm and Grover’s algorithm. Next, you’ll delve into Qiskit®, a quantum information science toolkit, and its constituent packages such as Terra, Aer, Ignis, and Aqua. You’ll cover these packages in detail, exploring their benefits and use cases. Later, you’ll discover various quantum gates that Qiskit® offers and even deconstruct a quantum program with their help, before going on to compare Noisy Intermediate-Scale Quantum (NISQ) and Universal Fault-Tolerant quantum computing using simulators and actual hardware. Finally, you’ll explore quantum algorithms and understand how they differ from classical algorithms, along with learning how to use pre-packaged algorithms in Qiskit® Aqua. By the end of this quantum computing book, you’ll be able to build and execute your own quantum programs using IBM Quantum Experience® and Qiskit® with Python. What you will learnVisualize a qubit in Python and understand the concept of superpositionInstall a local Qiskit® simulator and connect to actual quantum hardwareCompose quantum programs at the level of circuits using Qiskit® TerraCompare and contrast Noisy Intermediate-Scale Quantum computing (NISQ) and Universal Fault-Tolerant quantum computing using simulators and IBM Quantum® hardwareMitigate noise in quantum circuits and systems using Qiskit® IgnisUnderstand the difference between classical and quantum algorithms by implementing Grover’s algorithm in Qiskit®Who this book is for This book is for developers, data scientists, machine learning researchers, or quantum computing enthusiasts who want to understand how to use IBM Quantum Experience® and Qiskit® to implement quantum solutions and gain practical quantum computing experience. Python programming experience is a must to grasp the concepts covered in the book more effectively. Basic knowledge of quantum computing will also be beneficial.

Quantum Computers

Quantum Computers PDF Author: Jon Schiller
Publisher: CreateSpace
ISBN: 1439243492
Category : Computers
Languages : en
Pages : 183

Book Description
I attended the Caltech Seminar Day on 16th May 09 and heard a lecture: Quantum Information Science presented by Professor J Preskill. His lecture had a number of slides showing how the three dimensions of Quantum states function. He mentioned Quantum Computers as the next step in computer science from the classical transistor based digital computers which have made such a change in the life of modern day humans. Since I have a deep interest in computer science based on my professional experience: designing Avionics systems for military aircraft which were the first to use digital computers, Teaching Computer Science as an adjunct assistant professor to graduate students, Designing and fabricating small digital computers in a small company I decided I needed to learn about Quantum Computers and where research is going in this important new technology. The way I discovered the status of Quantum Computer is using the Google & Yahoo search engines. I was happy that Indiana University and Caltech have active Quantum Computer Research programs in progress. Jon Schiller holds a BS in Physics from Caltech and a PhD from the University of Southern California in EE & Mathematics. He has authored: 21st Century Cosmology

Quantum Computing

Quantum Computing PDF Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 030947969X
Category : Computers
Languages : en
Pages : 273

Book Description
Quantum mechanics, the subfield of physics that describes the behavior of very small (quantum) particles, provides the basis for a new paradigm of computing. First proposed in the 1980s as a way to improve computational modeling of quantum systems, the field of quantum computing has recently garnered significant attention due to progress in building small-scale devices. However, significant technical advances will be required before a large-scale, practical quantum computer can be achieved. Quantum Computing: Progress and Prospects provides an introduction to the field, including the unique characteristics and constraints of the technology, and assesses the feasibility and implications of creating a functional quantum computer capable of addressing real-world problems. This report considers hardware and software requirements, quantum algorithms, drivers of advances in quantum computing and quantum devices, benchmarks associated with relevant use cases, the time and resources required, and how to assess the probability of success.

Explorations in Quantum Computing

Explorations in Quantum Computing PDF Author: Colin P. Williams
Publisher: Springer Science & Business Media
ISBN: 1846288878
Category : Computers
Languages : en
Pages : 724

Book Description
By the year 2020, the basic memory components of a computer will be the size of individual atoms. At such scales, the current theory of computation will become invalid. "Quantum computing" is reinventing the foundations of computer science and information theory in a way that is consistent with quantum physics - the most accurate model of reality currently known. Remarkably, this theory predicts that quantum computers can perform certain tasks breathtakingly faster than classical computers – and, better yet, can accomplish mind-boggling feats such as teleporting information, breaking supposedly "unbreakable" codes, generating true random numbers, and communicating with messages that betray the presence of eavesdropping. This widely anticipated second edition of Explorations in Quantum Computing explains these burgeoning developments in simple terms, and describes the key technological hurdles that must be overcome to make quantum computers a reality. This easy-to-read, time-tested, and comprehensive textbook provides a fresh perspective on the capabilities of quantum computers, and supplies readers with the tools necessary to make their own foray into this exciting field. Topics and features: concludes each chapter with exercises and a summary of the material covered; provides an introduction to the basic mathematical formalism of quantum computing, and the quantum effects that can be harnessed for non-classical computation; discusses the concepts of quantum gates, entangling power, quantum circuits, quantum Fourier, wavelet, and cosine transforms, and quantum universality, computability, and complexity; examines the potential applications of quantum computers in areas such as search, code-breaking, solving NP-Complete problems, quantum simulation, quantum chemistry, and mathematics; investigates the uses of quantum information, including quantum teleportation, superdense coding, quantum data compression, quantum cloning, quantum negation, and quantum cryptography; reviews the advancements made towards practical quantum computers, covering developments in quantum error correction and avoidance, and alternative models of quantum computation. This text/reference is ideal for anyone wishing to learn more about this incredible, perhaps "ultimate," computer revolution. Dr. Colin P. Williams is Program Manager for Advanced Computing Paradigms at the NASA Jet Propulsion Laboratory, California Institute of Technology, and CEO of Xtreme Energetics, Inc. an advanced solar energy company. Dr. Williams has taught quantum computing and quantum information theory as an acting Associate Professor of Computer Science at Stanford University. He has spent over a decade inspiring and leading high technology teams and building business relationships with and Silicon Valley companies. Today his interests include terrestrial and Space-based power generation, quantum computing, cognitive computing, computational material design, visualization, artificial intelligence, evolutionary computing, and remote olfaction. He was formerly a Research Scientist at Xerox PARC and a Research Assistant to Prof. Stephen W. Hawking, Cambridge University.

Introduction to the Theory of Quantum Information Processing

Introduction to the Theory of Quantum Information Processing PDF Author: János A. Bergou
Publisher: Springer Science & Business Media
ISBN: 1461470927
Category : Computers
Languages : en
Pages : 158

Book Description
Introduction to the Theory of Quantum Information Processing provides the material for a one-semester graduate level course on quantum information theory and quantum computing for students who have had a one-year graduate course in quantum mechanics. Many standard subjects are treated, such as density matrices, entanglement, quantum maps, quantum cryptography, and quantum codes. Also included are discussions of quantum machines and quantum walks. In addition, the book provides detailed treatments of several underlying fundamental principles of quantum theory, such as quantum measurements, the no-cloning and no-signaling theorems, and their consequences. Problems of various levels of difficulty supplement the text, with the most challenging problems bringing the reader to the forefront of active research. This book provides a compact introduction to the fascinating and rapidly evolving interdisciplinary field of quantum information theory, and it prepares the reader for doing active research in this area.

Quantum Computing for the Quantum Curious

Quantum Computing for the Quantum Curious PDF Author: Ciaran Hughes
Publisher: Springer Nature
ISBN: 3030616010
Category : Science
Languages : en
Pages : 159

Book Description
This open access book makes quantum computing more accessible than ever before. A fast-growing field at the intersection of physics and computer science, quantum computing promises to have revolutionary capabilities far surpassing “classical” computation. Getting a grip on the science behind the hype can be tough: at its heart lies quantum mechanics, whose enigmatic concepts can be imposing for the novice. This classroom-tested textbook uses simple language, minimal math, and plenty of examples to explain the three key principles behind quantum computers: superposition, quantum measurement, and entanglement. It then goes on to explain how this quantum world opens up a whole new paradigm of computing. The book bridges the gap between popular science articles and advanced textbooks by making key ideas accessible with just high school physics as a prerequisite. Each unit is broken down into sections labelled by difficulty level, allowing the course to be tailored to the student’s experience of math and abstract reasoning. Problem sets and simulation-based labs of various levels reinforce the concepts described in the text and give the reader hands-on experience running quantum programs. This book can thus be used at the high school level after the AP or IB exams, in an extracurricular club, or as an independent project resource to give students a taste of what quantum computing is really about. At the college level, it can be used as a supplementary text to enhance a variety of courses in science and computing, or as a self-study guide for students who want to get ahead. Additionally, readers in business, finance, or industry will find it a quick and useful primer on the science behind computing’s future.

A Short Introduction to Quantum Information and Quantum Computation

A Short Introduction to Quantum Information and Quantum Computation PDF Author: Michel Le Bellac
Publisher: Cambridge University Press
ISBN: 1139457047
Category : Science
Languages : en
Pages : 179

Book Description
Quantum information and computation is a rapidly expanding and cross-disciplinary subject. This book, first published in 2006, gives a self-contained introduction to the field for physicists, mathematicians and computer scientists who want to know more about this exciting subject. After a step-by-step introduction to the quantum bit (qubit) and its main properties, the author presents the necessary background in quantum mechanics. The core of the subject, quantum computation, is illustrated by a detailed treatment of three quantum algorithms: Deutsch, Grover and Shor. The final chapters are devoted to the physical implementation of quantum computers, including the most recent aspects, such as superconducting qubits and quantum dots, and to a short account of quantum information. Written at a level suitable for undergraduates in physical sciences, no previous knowledge of quantum mechanics is assumed, and only elementary notions of physics are required. The book includes many short exercises, with solutions available to instructors through [email protected].