Reliability and Failure of Electronic Materials and Devices PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Reliability and Failure of Electronic Materials and Devices PDF full book. Access full book title Reliability and Failure of Electronic Materials and Devices by Milton Ohring. Download full books in PDF and EPUB format.

Reliability and Failure of Electronic Materials and Devices

Reliability and Failure of Electronic Materials and Devices PDF Author: Milton Ohring
Publisher: Academic Press
ISBN: 0080575528
Category : Technology & Engineering
Languages : en
Pages : 758

Book Description
Reliability and Failure of Electronic Materials and Devices is a well-established and well-regarded reference work offering unique, single-source coverage of most major topics related to the performance and failure of materials used in electronic devices and electronics packaging. With a focus on statistically predicting failure and product yields, this book can help the design engineer, manufacturing engineer, and quality control engineer all better understand the common mechanisms that lead to electronics materials failures, including dielectric breakdown, hot-electron effects, and radiation damage. This new edition adds cutting-edge knowledge gained both in research labs and on the manufacturing floor, with new sections on plastics and other new packaging materials, new testing procedures, and new coverage of MEMS devices. Covers all major types of electronics materials degradation and their causes, including dielectric breakdown, hot-electron effects, electrostatic discharge, corrosion, and failure of contacts and solder joints New updated sections on "failure physics," on mass transport-induced failure in copper and low-k dielectrics, and on reliability of lead-free/reduced-lead solder connections New chapter on testing procedures, sample handling and sample selection, and experimental design Coverage of new packaging materials, including plastics and composites

Reliability and Failure of Electronic Materials and Devices

Reliability and Failure of Electronic Materials and Devices PDF Author: Milton Ohring
Publisher: Academic Press
ISBN: 0080575528
Category : Technology & Engineering
Languages : en
Pages : 758

Book Description
Reliability and Failure of Electronic Materials and Devices is a well-established and well-regarded reference work offering unique, single-source coverage of most major topics related to the performance and failure of materials used in electronic devices and electronics packaging. With a focus on statistically predicting failure and product yields, this book can help the design engineer, manufacturing engineer, and quality control engineer all better understand the common mechanisms that lead to electronics materials failures, including dielectric breakdown, hot-electron effects, and radiation damage. This new edition adds cutting-edge knowledge gained both in research labs and on the manufacturing floor, with new sections on plastics and other new packaging materials, new testing procedures, and new coverage of MEMS devices. Covers all major types of electronics materials degradation and their causes, including dielectric breakdown, hot-electron effects, electrostatic discharge, corrosion, and failure of contacts and solder joints New updated sections on "failure physics," on mass transport-induced failure in copper and low-k dielectrics, and on reliability of lead-free/reduced-lead solder connections New chapter on testing procedures, sample handling and sample selection, and experimental design Coverage of new packaging materials, including plastics and composites

Corrosion and Reliability of Electronic Materials and Devices

Corrosion and Reliability of Electronic Materials and Devices PDF Author: Robert B. Comizzoli
Publisher: The Electrochemical Society
ISBN: 9781566772525
Category : Science
Languages : en
Pages : 308

Book Description


Materials and Reliability Handbook for Semiconductor Optical and Electron Devices

Materials and Reliability Handbook for Semiconductor Optical and Electron Devices PDF Author: Osamu Ueda
Publisher: Springer Science & Business Media
ISBN: 1461443369
Category : Technology & Engineering
Languages : en
Pages : 618

Book Description
Materials and Reliability Handbook for Semiconductor Optical and Electron Devices provides comprehensive coverage of reliability procedures and approaches for electron and photonic devices. These include lasers and high speed electronics used in cell phones, satellites, data transmission systems and displays. Lifetime predictions for compound semiconductor devices are notoriously inaccurate due to the absence of standard protocols. Manufacturers have relied on extrapolation back to room temperature of accelerated testing at elevated temperature. This technique fails for scaled, high current density devices. Device failure is driven by electric field or current mechanisms or low activation energy processes that are masked by other mechanisms at high temperature. The Handbook addresses reliability engineering for III-V devices, including materials and electrical characterization, reliability testing, and electronic characterization. These are used to develop new simulation technologies for device operation and reliability, which allow accurate prediction of reliability as well as the design specifically for improved reliability. The Handbook emphasizes physical mechanisms rather than an electrical definition of reliability. Accelerated aging is useful only if the failure mechanism is known. The Handbook also focuses on voltage and current acceleration stress mechanisms.

Reliability of Semiconductor Lasers and Optoelectronic Devices

Reliability of Semiconductor Lasers and Optoelectronic Devices PDF Author: Robert Herrick
Publisher: Woodhead Publishing
ISBN: 0128192550
Category : Technology & Engineering
Languages : en
Pages : 334

Book Description
Reliability of Semiconductor Lasers and Optoelectronic Devices simplifies complex concepts of optoelectronics reliability with approachable introductory chapters and a focus on real-world applications. This book provides a brief look at the fundamentals of laser diodes, introduces reliability qualification, and then presents real-world case studies discussing the principles of reliability and what occurs when these rules are broken. Then this book comprehensively looks at optoelectronics devices and the defects that cause premature failure in them and how to control those defects. Key materials and devices are reviewed including silicon photonics, vertical-cavity surface-emitting lasers (VCSELs), InGaN LEDs and lasers, and AlGaN LEDs, covering the majority of optoelectronic devices that we use in our everyday lives, powering the Internet, telecommunication, solid-state lighting, illuminators, and many other applications. This book features contributions from experts in industry and academia working in these areas and includes numerous practical examples and case studies. This book is suitable for new entrants to the field of optoelectronics working in R&D. • Includes case studies and numerous examples showing best practices and common mistakes affecting optoelectronics reliability written by experts working in the industry • Features the first wide-ranging and comprehensive overview of fiber optics reliability engineering, covering all elements of the practice from building a reliability laboratory, qualifying new products, to improving reliability on mature products. • Provides a look at the reliability issues and failure mechanisms for silicon photonics, VCSELs, InGaN LEDs and lasers, AIGaN LEDs, and more.

Failure Analysis

Failure Analysis PDF Author: Marius Bazu
Publisher: John Wiley & Sons
ISBN: 1119990009
Category : Technology & Engineering
Languages : en
Pages : 372

Book Description
Failure analysis is the preferred method to investigate product or process reliability and to ensure optimum performance of electrical components and systems. The physics-of-failure approach is the only internationally accepted solution for continuously improving the reliability of materials, devices and processes. The models have been developed from the physical and chemical phenomena that are responsible for degradation or failure of electronic components and materials and now replace popular distribution models for failure mechanisms such as Weibull or lognormal. Reliability engineers need practical orientation around the complex procedures involved in failure analysis. This guide acts as a tool for all advanced techniques, their benefits and vital aspects of their use in a reliability programme. Using twelve complex case studies, the authors explain why failure analysis should be used with electronic components, when implementation is appropriate and methods for its successful use. Inside you will find detailed coverage on: a synergistic approach to failure modes and mechanisms, along with reliability physics and the failure analysis of materials, emphasizing the vital importance of cooperation between a product development team involved the reasons why failure analysis is an important tool for improving yield and reliability by corrective actions the design stage, highlighting the ‘concurrent engineering' approach and DfR (Design for Reliability) failure analysis during fabrication, covering reliability monitoring, process monitors and package reliability reliability resting after fabrication, including reliability assessment at this stage and corrective actions a large variety of methods, such as electrical methods, thermal methods, optical methods, electron microscopy, mechanical methods, X-Ray methods, spectroscopic, acoustical, and laser methods new challenges in reliability testing, such as its use in microsystems and nanostructures This practical yet comprehensive reference is useful for manufacturers and engineers involved in the design, fabrication and testing of electronic components, devices, ICs and electronic systems, as well as for users of components in complex systems wanting to discover the roots of the reliability flaws for their products.

Practical Reliability Of Electronic Equipment And Products

Practical Reliability Of Electronic Equipment And Products PDF Author: Eugene R. Hnatek
Publisher: CRC Press
ISBN: 0824743547
Category : Technology & Engineering
Languages : en
Pages : 433

Book Description
Practical Reliability of Electronic Equipment and Products will help electrical, electronics, manufacturing, mechanical, systems design, and reliability engineers; electronics production managers; electronic circuit designers; and upper-level undergraduate and graduate students in these disciplines.

Reliable Design of Electronic Equipment

Reliable Design of Electronic Equipment PDF Author: Dhanasekharan Natarajan
Publisher: Springer
ISBN: 3319091115
Category : Technology & Engineering
Languages : en
Pages : 156

Book Description
This book explains reliability techniques with examples from electronics design for the benefit of engineers. It presents the application of de-rating, FMEA, overstress analyses and reliability improvement tests for designing reliable electronic equipment. Adequate information is provided for designing computerized reliability database system to support the application of the techniques by designers. Pedantic terms and the associated mathematics of reliability engineering discipline are excluded for the benefit of comprehensiveness and practical applications. This book offers excellent support for electrical and electronics engineering students and professionals, bridging academic curriculum with industrial expectations.

Electronic Thin-Film Reliability

Electronic Thin-Film Reliability PDF Author: King-Ning Tu
Publisher: Cambridge University Press
ISBN: 1139492705
Category : Technology & Engineering
Languages : en
Pages : 413

Book Description
Thin films are widely used in the electronic device industry. As the trend for miniaturization of electronic devices moves into the nanoscale domain, the reliability of thin films becomes an increasing concern. Building on the author's previous book, Electronic Thin Film Science by Tu, Mayer and Feldman, and based on a graduate course at UCLA given by the author, this new book focuses on reliability science and the processing of thin films. Early chapters address fundamental topics in thin film processes and reliability, including deposition, surface energy and atomic diffusion, before moving onto systematically explain irreversible processes in interconnect and packaging technologies. Describing electromigration, thermomigration and stress migration, with a closing chapter dedicated to failure analysis, the reader will come away with a complete theoretical and practical understanding of electronic thin film reliability. Kept mathematically simple, with real-world examples, this book is ideal for graduate students, researchers and practitioners.

Modern Power Electronic Devices

Modern Power Electronic Devices PDF Author: Francesco Iannuzzo
Publisher: Energy Engineering
ISBN: 9781785619175
Category : Technology & Engineering
Languages : en
Pages : 504

Book Description
Power devices are key to modern power systems, performing functions such as inverting and changing voltages, buffering and switching. Following a device-centric approach, this book covers power electronic applications, semiconductor physics, materials science, application engineering, and key technologies such as MOSFET, IGBT and WBG.

Practical Electronic Reliability Engineering

Practical Electronic Reliability Engineering PDF Author: Jerome Klion
Publisher: Springer Science & Business Media
ISBN: 9401169705
Category : Technology & Engineering
Languages : en
Pages : 616

Book Description
This book is intended for the engineer or engineering student with little or no prior background in reliability. Its purpose is to provide the background material and guidance necessary to comprehend and carry out all the tasks associated with a reliability program from specification generation to final demonstration of reliability achieved. Most available texts on reliability concentrate on the mathematics and statistics used for reliability analysis, evaluation, and demonstration. They are more often suited more for the professional with a heavier mathematical background that most engineers have, and more often than not, ignore or pay short-shrift to basic engineering design and organizational efforts associated with a reliability program. A reliability engineer must be familiar with both the mathematics and engineering aspects of a reliability program. This text: 1. Describes the mathematics needed for reliability analysis, evaluation, and demonstration commensurate with an engineer's background. 2. Provides background material, guidance, and references necessary to the structure and implementation of a reliability program including: • identification of the reliability standards in most common use • how to generate and respond to a reliability specification • how reliability can be increased • the tasks which make up a reliability program and how to judge the need and scope of each; how each is commonly performed; caution and comments about their application.