Self-Assembled Bio-Nanomaterials PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Self-Assembled Bio-Nanomaterials PDF full book. Access full book title Self-Assembled Bio-Nanomaterials by Gang Wei. Download full books in PDF and EPUB format.

Self-Assembled Bio-Nanomaterials

Self-Assembled Bio-Nanomaterials PDF Author: Gang Wei
Publisher: MDPI
ISBN: 303928536X
Category : Technology & Engineering
Languages : en
Pages : 134

Book Description
Biomolecular self-assembly provides a green, facile, and highly effective method to synthesize various functional nanomaterials that have exhibited considerable potential in the fields of nanotechnology, materials science, biomedicine, tissue engineering, food science, energy storage, and environmental science. In this collection of articles, we presented recent advance in the synthesis, characterization, and applications of self-assembled bio-nanomaterials. In a comprehensive review article, the controlled self-assembly of biomolecules including DNA, protein, peptide, enzymes, virus, and biopolymers via internal interactions and external simulations is introduced and discussed in detail. In other research articles, the self-assembly of DNA, protein, peptide, bio-drugs, liquid crystal polycarbonates, and diblock copolymers to various biomimetic/bioinspired nanomaterials and their potential applications in nanopatterning, sensors/biosensors, drug delivery, anti-parasite, and water purification are demonstrated.

Self-Assembled Bio-Nanomaterials

Self-Assembled Bio-Nanomaterials PDF Author: Gang Wei
Publisher: MDPI
ISBN: 303928536X
Category : Technology & Engineering
Languages : en
Pages : 134

Book Description
Biomolecular self-assembly provides a green, facile, and highly effective method to synthesize various functional nanomaterials that have exhibited considerable potential in the fields of nanotechnology, materials science, biomedicine, tissue engineering, food science, energy storage, and environmental science. In this collection of articles, we presented recent advance in the synthesis, characterization, and applications of self-assembled bio-nanomaterials. In a comprehensive review article, the controlled self-assembly of biomolecules including DNA, protein, peptide, enzymes, virus, and biopolymers via internal interactions and external simulations is introduced and discussed in detail. In other research articles, the self-assembly of DNA, protein, peptide, bio-drugs, liquid crystal polycarbonates, and diblock copolymers to various biomimetic/bioinspired nanomaterials and their potential applications in nanopatterning, sensors/biosensors, drug delivery, anti-parasite, and water purification are demonstrated.

Design, Principle and Application of Self-Assembled Nanobiomaterials in Biology and Medicine

Design, Principle and Application of Self-Assembled Nanobiomaterials in Biology and Medicine PDF Author: Alok Pandya
Publisher: Academic Press
ISBN: 032390985X
Category : Medical
Languages : en
Pages : 316

Book Description
Design, Principle and Application of Self-Assembled Nanobiomaterials in Biology and Medicine discusses recent advances in science and technology using nanoscale units that show the novel concept of combining nanotechnology with various research disciplines within both the biomedical and medicine fields. Self-assembly of molecules, macromolecules, and polymers is a fascinating strategy for the construction of various desired nanofabrication in chemistry, biology, and medicine for advanced applications. It has a number of advantages: (1) It is involving atomic-level modification of molecular structure using bond formation advanced techniques of synthetic chemistry. (2) It draws from the enormous wealth of examples in biology for the development of complex, functional structures. (3) It can incorporate biological structures directly as components in the final systems. (4) It requires that the target self-assembled structures be thermodynamically most stable with relatively defect-free and self-healing. In this book, we cover the various emerging self-assembled nanostructured objects including molecular machines, nano-cars molecular rotors, nanoparticles, nanosheets, nanotubes, nanowires, nano-flakes, nano-cubes, nano-disks, nanorings, DNA origami, transmembrane channels, and vesicles. These self-assembled materials are used for sensing, drug delivery, molecular recognition, tissue engineering energy generation, and molecular tuning. Provides a basic understanding of how to design, and implement various self-assembled nanobiomaterials Covers principles implemented in the constructions of novel nanostructured materials Offers many applications of self-assemblies in fluorescent biological labels, drug and gene delivery, bio-detection of pathogens, detection of proteins, probing of DNA structure, tissue engineering, and many more

In Vivo Self-Assembly Nanotechnology for Biomedical Applications

In Vivo Self-Assembly Nanotechnology for Biomedical Applications PDF Author: Hao Wang
Publisher: Springer
ISBN: 9811069131
Category : Technology & Engineering
Languages : en
Pages : 201

Book Description
This book reviews and discusses the development of self-assembled nanomaterials applied in biomedical fields. Based on self-assembled nanomaterial constructions, it highlights the mechanisms of the stimuli-response-induced assembly/disassembly and transformation. Moreover, it examines healthcare-related diseases, the applications of nanomaterials and therapy/detection strategies, providing readers with both a deeper understanding of the subject and inspirations for future research. The book is primarily intended for researchers and graduate students in the fields of material sciences and chemistry who wish to learn about the principles, methods, mechanisms and biomedical applications of self-assembled nanomaterials.

Self-Assembled Bio-Nanomaterials: Synthesis, Characterization, and Applications

Self-Assembled Bio-Nanomaterials: Synthesis, Characterization, and Applications PDF Author: Gang Wei
Publisher:
ISBN: 9783039285372
Category : Engineering (General). Civil engineering (General)
Languages : en
Pages : 134

Book Description
Biomolecular self-assembly provides a green, facile, and highly effective method to synthesize various functional nanomaterials that have exhibited considerable potential in the fields of nanotechnology, materials science, biomedicine, tissue engineering, food science, energy storage, and environmental science. In this collection of articles, we presented recent advance in the synthesis, characterization, and applications of self-assembled bio-nanomaterials. In a comprehensive review article, the controlled self-assembly of biomolecules including DNA, protein, peptide, enzymes, virus, and biopolymers via internal interactions and external simulations is introduced and discussed in detail. In other research articles, the self-assembly of DNA, protein, peptide, bio-drugs, liquid crystal polycarbonates, and diblock copolymers to various biomimetic/bioinspired nanomaterials and their potential applications in nanopatterning, sensors/biosensors, drug delivery, anti-parasite, and water purification are demonstrated.

Soft Machines

Soft Machines PDF Author: Richard A. L. Jones
Publisher: OUP Oxford
ISBN: 0191567248
Category : Science
Languages : en
Pages : 240

Book Description
Enthusiasts look forward to a time when tiny machines reassemble matter and process information with unparalleled power and precision. But is their vision realistic? Where is the science heading? As nanotechnology (a new technology that many believe will transform society in the next one hundred years) rises higher in the news agenda and popular consciousness, there is a real need for a book which discusses clearly the science on which this technology will be based. Whilst it is most easy to simply imagine these tiny machines as scaled-down versions of the macroscopic machines we are all familiar with, the way things behave on small scales is quite different to the way they behave on large scales. Engineering on the nanoscale will use very different principles to those we are used to in our everyday lives, and the materials used in nanotehnology will be soft and mutable, rather than hard and unyielding. "Soft Machines" explains in a lively and very accessible manner why the nanoworld is so different to the macro-world which we are all familiar with. Why does nature engineer things in the way it does, and how can we learn to use these unfamiliar principles to create valuable new materials and artefacts which will have a profound effect on medicine, electronics, energy and the environment in the twenty-first century. With a firmer understanding of the likely relationship between nanotechnology and nature itself, we can gain a much clearer notion of what dangers this powerful technology may potentially pose, as well as come to realise that nanotechnology will have more in common with biology than with conventional engineering.

Self-Assembled Nanomaterials II

Self-Assembled Nanomaterials II PDF Author: Toshimi Shimizu
Publisher: Springer Science & Business Media
ISBN: 3540851046
Category : Technology & Engineering
Languages : en
Pages : 200

Book Description
Nanotechnology is the creation of useful materials, devices, and systems through the control of matter on the nanometer-length scale. This takes place at the scale of atoms, molecules, and supramolecular structures. In the world of chemistry, the rational design of molecular structures and optimized control of self-assembly conditions have enabled us to control the resultant self-assembled morphologies having 1 to 100-nm dimensions with sing- nanometer precision. This current research trend applying the bottom-up approach to molecules remarkably contrasts with the top-down approach in nanotechnology, in which electronic devices are miniaturizing to smaller than 30 nm. However, even engineers working with state-of-the-art computer te- nology state that maintaining the rate of improvement based on Moore’s law will be the most dif?cult challenge in the next decade. On the other hand, the excellent properties and intelligent functions of a variety of natural materials have inspired polymer and organic chemists to tailor their synthetic organic alternatives by extracting the essential structural elements. In particular, one-dimensional structures in nature with sophis- cated hierarchy, such as myelinated axons in neurons, tendon, protein tubes of tubulin, and spider webs, provide intriguing examples of integrated functions and properties. Against this background, supramolecular self-assembly of one-dimensional architectures like ?bers and tubes from amphiphilic molecules, bio-related molecules, and properly designed self-assembling polymer molecules has - tracted rapidly growing interest.

Materials Nanoarchitectonics

Materials Nanoarchitectonics PDF Author: Katsuhiko Ariga
Publisher: Elsevier
ISBN: 0323994733
Category : Technology & Engineering
Languages : en
Pages : 648

Book Description
Materials Nanoarchitectonics: From Integrated Molecular Systems to Advanced Devices provides the latest information on the design and molecular manipulation of self-organized hierarchically structured systems using tailor-made nanoscale materials as structural and functional units. The book is organized into three main sections that focus on molecular design of building blocks and hybrid materials, formation of nanostructures, and applications and devices. Bringing together emerging materials, synthetic aspects, nanostructure strategies, and applications, the book aims to support further progress, by offering different perspectives and a strong interdisciplinary approach to this rapidly growing area of innovation. This is an extremely valuable resource for researchers, advanced students, and scientists in industry, with an interest in nanoarchitectonics, nanostructures, and nanomaterials, or across the areas of nanotechnology, chemistry, surface science, polymer science, electrical engineering, physics, chemical engineering, and materials science. Offers a nanoarchitectonic perspective on emerging fields, such as metal-organic frameworks, porous polymer materials, or biomimetic nanostructures Discusses different approaches to utilizing "soft chemistry" as a source for hierarchically organized materials Offers an interdisciplinary approach to the design and construction of integrated chemical nano systems Discusses novel approaches towards the creation of complex multiscale architectures

Self-Assembled Peptide Nanostructures

Self-Assembled Peptide Nanostructures PDF Author: Jaime Castillo
Publisher: CRC Press
ISBN: 9814316946
Category : Medical
Languages : en
Pages : 326

Book Description
The self-organization of bionanostructures into well-defined functional machineries found in nature has been a priceless source of ideas for researchers. The molecules of life, proteins, DNA, RNA, etc., as well as the structures and forms that these molecules assume serve as rich sources of ideas for scientists or engineers who are interested in developing bio-inspired materials for innovations in biomedical fields. In nature, molecular self-assembly is a process by which complex three-dimensional structures with well-defined functions are constructed, starting from simple building blocks such as proteins and peptides. This book introduces readers to the theory and mechanisms of peptide self-assembly processes. The authors present the more common peptide self-assembled building blocks and discuss how researchers from different fields can apply self-assembling principles to bionanotechnology applications. The advantages and challenges are mentioned together with examples that reflect the state of the art of the use of self-assembled peptide building blocks in nanotechnology.

Biological and Bio-inspired Nanomaterials

Biological and Bio-inspired Nanomaterials PDF Author: Sarah Perrett
Publisher: Springer Nature
ISBN: 9811397910
Category : Medical
Languages : en
Pages : 440

Book Description
This book summarizes naturally occurring and designed bio-inspired molecular building blocks assembled into nanoscale structures. It covers a fascinating array of biomimetic and bioinspired materials, including inorganic nanozymes, structures formed by DNA origami, a wide range of peptide and protein-based nanomaterials, as well as their applications in diagnostics and therapeutics. The book elucidates the mechanism of assembly of these materials and characterisation of their mechanical and physico-chemical properties which inspires readers not only to exploit the potential applications of nanomaterials, but also to understand their potential risks and benefits. It will be of interest to a broad audience of students and researchers spanning the disciplines of biology, chemistry, engineering, materials science, and physics.

Bionanotechnology

Bionanotechnology PDF Author: Bernd Rehm
Publisher: Caister Academic Press Limited
ISBN: 9781908230164
Category : Science
Languages : en
Pages : 0

Book Description
The emerging science of bionanotechnology refers to the harnessing of the vast diversity of self-assembling building blocks and processes for the assembly of nano-scaled structures for the manufacture of highly functional nanomaterials. Bionanotechnology is an interdisciplinary field combining biological principles with physical and chemical procedures to generate nano-sized building blocks and materials with specific functions and new properties. It involves the development of biologically-based procedures, the use of biological components and systems, the design of biocompatible objects and systems and the use of nanotechnology to support biotechnological processes. Under the expert guidance of Bernd H. A. Rehm, the authors of this book provide a survey of the most striking and successful approaches for the production of biogenic nanodevices considering not only living organisms as manufacturer but also in vitro processes that utilize the self-assembly of isolated biomolecules. The book provides a topical overview of the vast field of bionanotechnology by describing various biological nanostructures, the implied design space and the enormous potential for applications in medicine and technology. Two chapters describe the microbial production of tailor-made self-assembled nanostructures which can be processed into functional nanoparticles. Other chapters comprehensively summarize recent developments in the use of protein-based assemblies for nanodevice and nanomaterials production. Topics include: polymer synthesis, self-assembly and display technology, self-assembly and application of cellulosomal components, protein-aided mineralization of inorganic nanostructures, amyloid fibrils as bionanomaterials, self-assembly and applications of bacteriophages and virus-like particles, plant oil bodies and oleosins-structure function and biotechnological applications, visual restoration using microbial rhodopsins, magnetosomes and liposome-nanoparticle assemblies. This is a recommended book for anyone interested in the fields of nanotechnology, biotechnology, metabolic engineering, molecular biology, genetic engineering and protein design.