Theory of Computational Complexity PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Theory of Computational Complexity PDF full book. Access full book title Theory of Computational Complexity by Ding-Zhu Du. Download full books in PDF and EPUB format.

Theory of Computational Complexity

Theory of Computational Complexity PDF Author: Ding-Zhu Du
Publisher: John Wiley & Sons
ISBN: 1118031164
Category : Mathematics
Languages : en
Pages : 511

Book Description
A complete treatment of fundamentals and recent advances in complexity theory Complexity theory studies the inherent difficulties of solving algorithmic problems by digital computers. This comprehensive work discusses the major topics in complexity theory, including fundamental topics as well as recent breakthroughs not previously available in book form. Theory of Computational Complexity offers a thorough presentation of the fundamentals of complexity theory, including NP-completeness theory, the polynomial-time hierarchy, relativization, and the application to cryptography. It also examines the theory of nonuniform computational complexity, including the computational models of decision trees and Boolean circuits, and the notion of polynomial-time isomorphism. The theory of probabilistic complexity, which studies complexity issues related to randomized computation as well as interactive proof systems and probabilistically checkable proofs, is also covered. Extraordinary in both its breadth and depth, this volume: * Provides complete proofs of recent breakthroughs in complexity theory * Presents results in well-defined form with complete proofs and numerous exercises * Includes scores of graphs and figures to clarify difficult material An invaluable resource for researchers as well as an important guide for graduate and advanced undergraduate students, Theory of Computational Complexity is destined to become the standard reference in the field.

Theory of Computational Complexity

Theory of Computational Complexity PDF Author: Ding-Zhu Du
Publisher: John Wiley & Sons
ISBN: 1118031164
Category : Mathematics
Languages : en
Pages : 511

Book Description
A complete treatment of fundamentals and recent advances in complexity theory Complexity theory studies the inherent difficulties of solving algorithmic problems by digital computers. This comprehensive work discusses the major topics in complexity theory, including fundamental topics as well as recent breakthroughs not previously available in book form. Theory of Computational Complexity offers a thorough presentation of the fundamentals of complexity theory, including NP-completeness theory, the polynomial-time hierarchy, relativization, and the application to cryptography. It also examines the theory of nonuniform computational complexity, including the computational models of decision trees and Boolean circuits, and the notion of polynomial-time isomorphism. The theory of probabilistic complexity, which studies complexity issues related to randomized computation as well as interactive proof systems and probabilistically checkable proofs, is also covered. Extraordinary in both its breadth and depth, this volume: * Provides complete proofs of recent breakthroughs in complexity theory * Presents results in well-defined form with complete proofs and numerous exercises * Includes scores of graphs and figures to clarify difficult material An invaluable resource for researchers as well as an important guide for graduate and advanced undergraduate students, Theory of Computational Complexity is destined to become the standard reference in the field.

Computational Complexity

Computational Complexity PDF Author: Sanjeev Arora
Publisher: Cambridge University Press
ISBN: 0521424267
Category : Computers
Languages : en
Pages : 609

Book Description
New and classical results in computational complexity, including interactive proofs, PCP, derandomization, and quantum computation. Ideal for graduate students.

Complexity and Real Computation

Complexity and Real Computation PDF Author: Lenore Blum
Publisher: Springer Science & Business Media
ISBN: 1461207010
Category : Computers
Languages : en
Pages : 456

Book Description
The classical theory of computation has its origins in the work of Goedel, Turing, Church, and Kleene and has been an extraordinarily successful framework for theoretical computer science. The thesis of this book, however, is that it provides an inadequate foundation for modern scientific computation where most of the algorithms are real number algorithms. The goal of this book is to develop a formal theory of computation which integrates major themes of the classical theory and which is more directly applicable to problems in mathematics, numerical analysis, and scientific computing. Along the way, the authors consider such fundamental problems as: * Is the Mandelbrot set decidable? * For simple quadratic maps, is the Julia set a halting set? * What is the real complexity of Newton's method? * Is there an algorithm for deciding the knapsack problem in a ploynomial number of steps? * Is the Hilbert Nullstellensatz intractable? * Is the problem of locating a real zero of a degree four polynomial intractable? * Is linear programming tractable over the reals? The book is divided into three parts: The first part provides an extensive introduction and then proves the fundamental NP-completeness theorems of Cook-Karp and their extensions to more general number fields as the real and complex numbers. The later parts of the book develop a formal theory of computation which integrates major themes of the classical theory and which is more directly applicable to problems in mathematics, numerical analysis, and scientific computing.

Computational Complexity

Computational Complexity PDF Author: Oded Goldreich
Publisher: Cambridge University Press
ISBN: 9780521884730
Category : Computers
Languages : en
Pages : 632

Book Description
This book offers a comprehensive perspective to modern topics in complexity theory, which is a central field of the theoretical foundations of computer science. It addresses the looming question of what can be achieved within a limited amount of time with or without other limited natural computational resources. Can be used as an introduction for advanced undergraduate and graduate students as either a textbook or for self-study, or to experts, since it provides expositions of the various sub-areas of complexity theory such as hardness amplification, pseudorandomness and probabilistic proof systems.

Theory of Computational Complexity

Theory of Computational Complexity PDF Author: Ding-Zhu Du
Publisher: John Wiley & Sons
ISBN: 1118306082
Category : Mathematics
Languages : en
Pages : 517

Book Description
Praise for the First Edition "... complete, up-to-date coverage of computational complexity theory...the book promises to become the standard reference on computational complexity." —Zentralblatt MATH A thorough revision based on advances in the field of computational complexity and readers’ feedback, the Second Edition of Theory of Computational Complexity presents updates to the principles and applications essential to understanding modern computational complexity theory. The new edition continues to serve as a comprehensive resource on the use of software and computational approaches for solving algorithmic problems and the related difficulties that can be encountered. Maintaining extensive and detailed coverage, Theory of Computational Complexity, Second Edition, examines the theory and methods behind complexity theory, such as computational models, decision tree complexity, circuit complexity, and probabilistic complexity. The Second Edition also features recent developments on areas such as NP-completeness theory, as well as: A new combinatorial proof of the PCP theorem based on the notion of expander graphs, a research area in the field of computer science Additional exercises at varying levels of difficulty to further test comprehension of the presented material End-of-chapter literature reviews that summarize each topic and offer additional sources for further study Theory of Computational Complexity, Second Edition, is an excellent textbook for courses on computational theory and complexity at the graduate level. The book is also a useful reference for practitioners in the fields of computer science, engineering, and mathematics who utilize state-of-the-art software and computational methods to conduct research.

Computational Complexity

Computational Complexity PDF Author:
Publisher:
ISBN:
Category : Computational complexity
Languages : en
Pages : 0

Book Description


Mathematics and Computation

Mathematics and Computation PDF Author: Avi Wigderson
Publisher: Princeton University Press
ISBN: 0691189137
Category : Computers
Languages : en
Pages : 434

Book Description
An introduction to computational complexity theory, its connections and interactions with mathematics, and its central role in the natural and social sciences, technology, and philosophy Mathematics and Computation provides a broad, conceptual overview of computational complexity theory—the mathematical study of efficient computation. With important practical applications to computer science and industry, computational complexity theory has evolved into a highly interdisciplinary field, with strong links to most mathematical areas and to a growing number of scientific endeavors. Avi Wigderson takes a sweeping survey of complexity theory, emphasizing the field’s insights and challenges. He explains the ideas and motivations leading to key models, notions, and results. In particular, he looks at algorithms and complexity, computations and proofs, randomness and interaction, quantum and arithmetic computation, and cryptography and learning, all as parts of a cohesive whole with numerous cross-influences. Wigderson illustrates the immense breadth of the field, its beauty and richness, and its diverse and growing interactions with other areas of mathematics. He ends with a comprehensive look at the theory of computation, its methodology and aspirations, and the unique and fundamental ways in which it has shaped and will further shape science, technology, and society. For further reading, an extensive bibliography is provided for all topics covered. Mathematics and Computation is useful for undergraduate and graduate students in mathematics, computer science, and related fields, as well as researchers and teachers in these fields. Many parts require little background, and serve as an invitation to newcomers seeking an introduction to the theory of computation. Comprehensive coverage of computational complexity theory, and beyond High-level, intuitive exposition, which brings conceptual clarity to this central and dynamic scientific discipline Historical accounts of the evolution and motivations of central concepts and models A broad view of the theory of computation's influence on science, technology, and society Extensive bibliography

The Complexity Theory Companion

The Complexity Theory Companion PDF Author: Lane Hemaspaandra
Publisher: Springer Science & Business Media
ISBN: 9783540674191
Category : Computers
Languages : en
Pages : 396

Book Description
Here is an accessible, algorithmically oriented guide to some of the most interesting techniques of complexity theory. The book shows that simple algorithms are at the heart of complexity theory. The book is organized by technique rather than by topic. Each chapter focuses on one technique: what it is, and what results and applications it yields.

Computability and Complexity Theory

Computability and Complexity Theory PDF Author: Steven Homer
Publisher: Springer Science & Business Media
ISBN: 1461406811
Category : Computers
Languages : en
Pages : 310

Book Description
This revised and extensively expanded edition of Computability and Complexity Theory comprises essential materials that are core knowledge in the theory of computation. The book is self-contained, with a preliminary chapter describing key mathematical concepts and notations. Subsequent chapters move from the qualitative aspects of classical computability theory to the quantitative aspects of complexity theory. Dedicated chapters on undecidability, NP-completeness, and relative computability focus on the limitations of computability and the distinctions between feasible and intractable. Substantial new content in this edition includes: a chapter on nonuniformity studying Boolean circuits, advice classes and the important result of Karp─Lipton. a chapter studying properties of the fundamental probabilistic complexity classes a study of the alternating Turing machine and uniform circuit classes. an introduction of counting classes, proving the famous results of Valiant and Vazirani and of Toda a thorough treatment of the proof that IP is identical to PSPACE With its accessibility and well-devised organization, this text/reference is an excellent resource and guide for those looking to develop a solid grounding in the theory of computing. Beginning graduates, advanced undergraduates, and professionals involved in theoretical computer science, complexity theory, and computability will find the book an essential and practical learning tool. Topics and features: Concise, focused materials cover the most fundamental concepts and results in the field of modern complexity theory, including the theory of NP-completeness, NP-hardness, the polynomial hierarchy, and complete problems for other complexity classes Contains information that otherwise exists only in research literature and presents it in a unified, simplified manner Provides key mathematical background information, including sections on logic and number theory and algebra Supported by numerous exercises and supplementary problems for reinforcement and self-study purposes

Complexity in Information Theory

Complexity in Information Theory PDF Author: Yaser S. Abu-Mostafa
Publisher: Springer Science & Business Media
ISBN: 1461237742
Category : Computers
Languages : en
Pages : 138

Book Description
The means and ends of information theory and computational complexity have grown significantly closer over the past decade. Common analytic tools, such as combinatorial mathematics and information flow arguments, have been the cornerstone of VLSl complexity and cooperative computation. The basic assumption of limited computing resources is the premise for cryptography, where the distinction is made between available information and accessible information. Numerous other examples of common goals and tools between the two disciplines have shaped a new research category of 'information and complexity theory'. This volume is intended to expose to the research community some of the recent significant topics along this theme. The contributions selected here are all very basic, presently active, fairly well-established, and stimulating for substantial follow-ups. This is not an encyclopedia on the subject, it is concerned only with timely contributions of sufficient coherence and promise. The styles of the six chapters cover a wide spectrum from specific mathematical results to surveys of large areas. It is hoped that the technical content and theme of this volume will help establish this general research area. I would like to thank the authors of the chapters for contributing to this volume. I also would like to thank Ed Posner for his initiative to address this subject systematically, and Andy Fyfe and Ruth Erlanson for proofreading some of the chapters.