Topological Structures in Ferroic Materials PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Topological Structures in Ferroic Materials PDF full book. Access full book title Topological Structures in Ferroic Materials by Jan Seidel. Download full books in PDF and EPUB format.

Topological Structures in Ferroic Materials

Topological Structures in Ferroic Materials PDF Author: Jan Seidel
Publisher: Springer
ISBN: 3319253018
Category : Science
Languages : en
Pages : 241

Book Description
This book provides a state-of-the art overview of a highly interesting emerging research field in solid state physics/nanomaterials science, topological structures in ferroic materials. Topological structures in ferroic materials have received strongly increasing attention in the last few years. Such structures include domain walls, skyrmions and vortices, which can form in ferroelectric, magnetic, ferroelastic or multiferroic materials. These topological structures can have completely different properties from the bulk material they form in. They also can be controlled by external fields (electrical, magnetic, strain) or currents, which makes them interesting from a fundamental research point of view as well as for potential novel nanomaterials applications. To provide a comprehensive overview, international leading researches in these fields contributed review-like chapters about their own work and the work of other researchers to provide a current view of this highly interesting topic.

Topological Structures in Ferroic Materials

Topological Structures in Ferroic Materials PDF Author: Jan Seidel
Publisher: Springer
ISBN: 3319253018
Category : Science
Languages : en
Pages : 241

Book Description
This book provides a state-of-the art overview of a highly interesting emerging research field in solid state physics/nanomaterials science, topological structures in ferroic materials. Topological structures in ferroic materials have received strongly increasing attention in the last few years. Such structures include domain walls, skyrmions and vortices, which can form in ferroelectric, magnetic, ferroelastic or multiferroic materials. These topological structures can have completely different properties from the bulk material they form in. They also can be controlled by external fields (electrical, magnetic, strain) or currents, which makes them interesting from a fundamental research point of view as well as for potential novel nanomaterials applications. To provide a comprehensive overview, international leading researches in these fields contributed review-like chapters about their own work and the work of other researchers to provide a current view of this highly interesting topic.

Chiral and Topological Nature of Magnetic Skyrmions

Chiral and Topological Nature of Magnetic Skyrmions PDF Author: Shilei Zhang
Publisher: Springer
ISBN: 3319982524
Category : Science
Languages : en
Pages : 117

Book Description
This book focuses on the characterisation of the chiral and topological nature of magnetic skyrmions in noncentrosymmetric helimagnets. In these materials, the skyrmion lattice phase appears as a long-range-ordered, close-packed grid of nearly millimetre-level correlation length, while the size of a single skyrmion is 3–100 nm. This is a very challenging range of length scales (spanning 5 orders of magnitude from tens of nm to mm) for magnetic characterisation techniques, and, to date, extensive information on this fascinating, magnetically ordered state has remained elusive. In response, this work develops novel resonant elastic x-ray scattering (REXS) techniques, which allow the magnetic structure, including the long-range order and domain formation, as well as microscopic skyrmion parameters, to be measured across the full range of length scales. Most importantly, using circular dichroism in REXS, the internal structure of a given skyrmion, the topological winding number, and the skyrmion helicity angle can all be unambiguously determined. These new techniques are applicable to many materials systems, and allow us to retrieve information on modulated spin structures, multiferroic order, spin-density-waves, and other forms of topological magnetic order.

Topology in Magnetism

Topology in Magnetism PDF Author: Jiadong Zang
Publisher: Springer
ISBN: 3319973347
Category : Science
Languages : en
Pages : 416

Book Description
This book presents both experimental and theoretical aspects of topology in magnetism. It first discusses how the topology in real space is relevant for a variety of magnetic spin structures, including domain walls, vortices, skyrmions, and dynamic excitations, and then focuses on the phenomena that are driven by distinct topology in reciprocal momentum space, such as anomalous and spin Hall effects, topological insulators, and Weyl semimetals. Lastly, it examines how topology influences dynamic phenomena and excitations (such as spin waves, magnons, localized dynamic solitons, and Majorana fermions). The book also shows how these developments promise to lead the transformative revolution of information technology.

Magnetic Skyrmions and Their Applications

Magnetic Skyrmions and Their Applications PDF Author: Giovanni Finocchio
Publisher: Woodhead Publishing
ISBN: 012820933X
Category : Technology & Engineering
Languages : en
Pages : 472

Book Description
Magnetic skyrmions are particle-like objects described by localized solutions of non-linear partial differential equations. Up until a few decades ago, it was believed that magnetic skyrmions only existed in condensed matter as short-term excitations that would quickly collapse into linear singularities. The contrary was proven theoretically in 1989 and evidentially in 2009. It is now known that skyrmions can exist as long-living metastable configurations in low-symmetry condensed matter systems with broken mirror symmetry, increasing the potential applications possible. Magnetic Skyrmions and their Applications delves into the fundamental principles and most recent research and developments surrounding these unique magnetic particles. Despite achievements in the synthesis of systems stabilizing chiral magnetic skyrmions and the variety of experimental investigations and numerical calculations, there have not been many summaries of the fundamental physical principles governing magnetic skyrmions or integrating those concepts with methods of detection, characterization and potential applications. Magnetic Skyrmions and their Applications delivers a coherent, state-of-the-art discussion on the current knowledge and potential applications of magnetic skyrmions in magnetic materials and device applications. First the book reviews key concepts such as topology, magnetism and materials for magnetic skyrmions. Then, charactization methods, physical mechanisms, and emerging applications are discussed. Covers background knowledge and details the basic principles of magnetic skyrmions, including materials, characterization, statics and dynamics Reviews materials for skyrmion stabilization including bulk materials and interface-dominated multilayer materials Describes both well-known and unconventional applications of magnetic skyrmions, such as memristors and reservoir computing

Domain Walls

Domain Walls PDF Author: Dennis Meier
Publisher: Oxford University Press
ISBN: 0192607413
Category : Science
Languages : en
Pages : 288

Book Description
Technological evolution and revolution are both driven by the discovery of new functionalities, new materials and the design of yet smaller, faster, and more energy-efficient components. Progress is being made at a breathtaking pace, stimulated by the rapidly growing demand for more powerful and readily available information technology. High-speed internet and data-streaming, home automation, tablets and smartphones are now "necessities" for our everyday lives. Consumer expectations for progressively more data storage and exchange appear to be insatiable. Oxide electronics is a promising and relatively new field that has the potential to trigger major advances in information technology. Oxide interfaces are particularly intriguing. Here, low local symmetry combined with an increased susceptibility to external fields leads to unusual physical properties distinct from those of the homogeneous bulk. In this context, ferroic domain walls have attracted recent attention as a completely new type of oxide interface. In addition to their functional properties, such walls are spatially mobile and can be created, moved, and erased on demand. This unique degree of flexibility enables domain walls to take an active role in future devices and hold a great potential as multifunctional 2D systems for nanoelectronics. With domain walls as reconfigurable electronic 2D components, a new generation of adaptive nano-technology and flexible circuitry becomes possible, that can be altered and upgraded throughout the lifetime of the device. Thus, what started out as fundamental research, at the limit of accessibility, is finally maturing into a promising concept for next-generation technology.

Curvilinear Micromagnetism

Curvilinear Micromagnetism PDF Author: Denys Makarov
Publisher: Springer Nature
ISBN: 3031090861
Category : Science
Languages : en
Pages : 420

Book Description
This is the first book providing overview of magnetism in curved geometries, highlighting numerous peculiarities emerging from geometrically curved magnetic objects such as curved wires, shells, as well as complex three-dimensional structures. Extending planar two-dimensional structures into the three-dimensional space has become a general trend in multiple disciplines across electronics, photonics, plasmonics and magnetics. This approach provides the means to modify conventional and even launch novel functionalities by tailoring the local curvature of an object. The book covers the theory of curvilinear micromagnetism as well as experimental studies of geometrically curved magnets including both fabrication and characterization. With its coverage of fundamental aspects, together with exploration of numerous applications across magnonics, bio-engineering, soft robotics and shapeable magnetoelectronics, this edited collection is ideal for all scientists in academia and industry seeking an overview and wishing to keep abreast of advances in the novel field of curvilinear micromagnetism. It provides easy but comprehensive access to the field for newcomers, and can be used for graduate-level courses on this subject.

Multiferroics

Multiferroics PDF Author: Andres Cano
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110581043
Category : Science
Languages : en
Pages : 538

Book Description
Multiferroics, materials with a coexistence of magnetic and ferroelectric order, provide an efficient route for the control of magnetism by electric fields. The authors cover multiferroic thin-film heterostructures, device architectures and domain/interface effects. They critically discuss achievements as well as limitations and assess opportunities for future applications.

Multiferroic Materials

Multiferroic Materials PDF Author: Junling Wang
Publisher: CRC Press
ISBN: 148225154X
Category : Science
Languages : en
Pages : 392

Book Description
"a very detailed book on multiferroics that will be useful for PhD students and researchers interested in this emerging field of materials science" —Dr. Wilfrid Prellier, Research Director, CNRS, Caen, France Multiferroics has emerged as one of the hottest topics in solid state physics in this millennium. The coexistence of multiple ferroic/antiferroic properties makes them useful both for fundamental studies and practical applications such as revolutionary new memory technologies and next-generation spintronics devices. This book provides an historical introduction to the field, followed by a summary of recent progress in single-phase multiferroics (type-I and type-II), multiferroic composites (bulk and nano composites), and emerging areas such as domain walls and vortices. Each chapter addresses potential technological implications. There is also a section dedicated to theoretical approaches, both phenomenological and first-principles calculations.

Frustrated Materials and Ferroic Glasses

Frustrated Materials and Ferroic Glasses PDF Author: Turab Lookman
Publisher: Springer
ISBN: 3319969145
Category : Science
Languages : en
Pages : 276

Book Description
This book provides a comprehensive introduction to ferroics and frustrated materials. Ferroics comprise a range of materials classes with functionalities such as magnetism, polarization, and orbital degrees of freedom and strain. Frustration, due to geometrical constraints, and disorder, due to chemical and/or structural inhomogeneities, can lead to glassy behavior, which has either been directly observed or inferred in a range of materials classes from model systems such as artificial spin ice, shape memory alloys, and ferroelectrics to electronically functional materials such as manganites. Interesting and unusual properties are found to be associated with these glasses and have potential for novel applications. Just as in prototypical spin glass and structural glasses, the elements of frustration and disorder lead to non-ergodocity, history dependence, frequency dependent relaxation behavior, and the presence of inhomogeneous nano clusters or domains. In addition, there are new states of matter, such as spin ice; however, it is still an open question as to whether these systems belong to the same family or universality class. The purpose of this work is to collect in a single volume the range of materials systems with differing functionalities that show many of the common characteristics of geometrical frustration, where interacting degrees of freedom do not fit in a lattice or medium, and glassy behavior is accompanied by additional presence of disorder. The chapters are written by experts in their fields and span experiment and theory, as well as simulations. Frustrated Materials and Ferroic Glasses will be of interest to a wide range of readers in condensed matter physics and materials science.

Quantum Science

Quantum Science PDF Author: Taku Onishi
Publisher: Springer Nature
ISBN: 9811944210
Category : Science
Languages : en
Pages : 498

Book Description
This book focuses on recent topics of quantum science in both physics and chemistry. Until now, quantum science has not been fully discussed from the interdisciplinary vantage points of both physics and chemistry. This book, however, is written not only for theoretical physicists and chemists, but also for experimentalists in the fields of physical chemistry and condensed matter physics, as collaboration and interplay between construction of quantum theory, and experimentation has become more important. Tips for starting new types of research projects will be found in an understanding of cutting-edge quantum science. In Part I, quantum electronic structures are explained in cases of strongly correlated copper oxides and heavy elements. In Part II, quantum molecular dynamics is investigated by computational approaches and molecular beam experiments. In Part III, after lithium problem in big bang nucleosynthesis scenario is considered using supersymmetric standard model, quantum theories in atomic and molecular systems are reviewed. Finally, in Part IV, the development of quantum computational method is introduced.