Understanding LTE with MATLAB PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Understanding LTE with MATLAB PDF full book. Access full book title Understanding LTE with MATLAB by Houman Zarrinkoub. Download full books in PDF and EPUB format.

Understanding LTE with MATLAB

Understanding LTE with MATLAB PDF Author: Houman Zarrinkoub
Publisher: John Wiley & Sons
ISBN: 1118443454
Category : Technology & Engineering
Languages : en
Pages : 512

Book Description
An introduction to technical details related to the PhysicalLayer of the LTE standard with MATLAB® The LTE (Long Term Evolution) and LTE-Advanced are among thelatest mobile communications standards, designed to realize thedream of a truly global, fast, all-IP-based, secure broadbandmobile access technology. This book examines the Physical Layer (PHY) of the LTE standardsby incorporating three conceptual elements: an overview of thetheory behind key enabling technologies; a concise discussionregarding standard specifications; and the MATLAB® algorithmsneeded to simulate the standard. The use of MATLAB®, a widely used technical computinglanguage, is one of the distinguishing features of this book.Through a series of MATLAB® programs, the author explores eachof the enabling technologies, pedagogically synthesizes an LTE PHYsystem model, and evaluates system performance at each stage.Following this step-by-step process, readers will achieve deeperunderstanding of LTE concepts and specifications throughsimulations. Key Features: • Accessible, intuitive, and progressive; one of the fewbooks to focus primarily on the modeling, simulation, andimplementation of the LTE PHY standard • Includes case studies and testbenches in MATLAB®,which build knowledge gradually and incrementally until afunctional specification for the LTE PHY is attained • Accompanying Web site includes all MATLAB® programs,together with PowerPoint slides and other illustrative examples Dr Houman Zarrinkoub has served as a development manager andnow as a senior product manager with MathWorks, based inMassachusetts, USA. Within his 12 years at MathWorks, he has beenresponsible for multiple signal processing and communicationssoftware tools. Prior to MathWorks, he was a research scientist inthe Wireless Group at Nortel Networks, where he contributed tomultiple standardization projects for 3G mobile technologies. Hehas been awarded multiple patents on topics related to computersimulations. He holds a BSc degree in Electrical Engineering fromMcGill University and MSc and PhD degrees in Telecommunicationsfrom the Institut Nationale de la Recherche Scientifique, inCanada. ahref="http://www.wiley.com/go/zarrinkoub"www.wiley.com/go/zarrinkoub/a

Understanding LTE with MATLAB

Understanding LTE with MATLAB PDF Author: Houman Zarrinkoub
Publisher: John Wiley & Sons
ISBN: 1118443454
Category : Technology & Engineering
Languages : en
Pages : 512

Book Description
An introduction to technical details related to the PhysicalLayer of the LTE standard with MATLAB® The LTE (Long Term Evolution) and LTE-Advanced are among thelatest mobile communications standards, designed to realize thedream of a truly global, fast, all-IP-based, secure broadbandmobile access technology. This book examines the Physical Layer (PHY) of the LTE standardsby incorporating three conceptual elements: an overview of thetheory behind key enabling technologies; a concise discussionregarding standard specifications; and the MATLAB® algorithmsneeded to simulate the standard. The use of MATLAB®, a widely used technical computinglanguage, is one of the distinguishing features of this book.Through a series of MATLAB® programs, the author explores eachof the enabling technologies, pedagogically synthesizes an LTE PHYsystem model, and evaluates system performance at each stage.Following this step-by-step process, readers will achieve deeperunderstanding of LTE concepts and specifications throughsimulations. Key Features: • Accessible, intuitive, and progressive; one of the fewbooks to focus primarily on the modeling, simulation, andimplementation of the LTE PHY standard • Includes case studies and testbenches in MATLAB®,which build knowledge gradually and incrementally until afunctional specification for the LTE PHY is attained • Accompanying Web site includes all MATLAB® programs,together with PowerPoint slides and other illustrative examples Dr Houman Zarrinkoub has served as a development manager andnow as a senior product manager with MathWorks, based inMassachusetts, USA. Within his 12 years at MathWorks, he has beenresponsible for multiple signal processing and communicationssoftware tools. Prior to MathWorks, he was a research scientist inthe Wireless Group at Nortel Networks, where he contributed tomultiple standardization projects for 3G mobile technologies. Hehas been awarded multiple patents on topics related to computersimulations. He holds a BSc degree in Electrical Engineering fromMcGill University and MSc and PhD degrees in Telecommunicationsfrom the Institut Nationale de la Recherche Scientifique, inCanada. ahref="http://www.wiley.com/go/zarrinkoub"www.wiley.com/go/zarrinkoub/a

Applied Optimization with MATLAB Programming

Applied Optimization with MATLAB Programming PDF Author: P. Venkataraman
Publisher: John Wiley & Sons
ISBN: 047008488X
Category : Technology & Engineering
Languages : en
Pages : 546

Book Description
Technology/Engineering/Mechanical Provides all the tools needed to begin solving optimization problems using MATLAB® The Second Edition of Applied Optimization with MATLAB® Programming enables readers to harness all the features of MATLAB® to solve optimization problems using a variety of linear and nonlinear design optimization techniques. By breaking down complex mathematical concepts into simple ideas and offering plenty of easy-to-follow examples, this text is an ideal introduction to the field. Examples come from all engineering disciplines as well as science, economics, operations research, and mathematics, helping readers understand how to apply optimization techniques to solve actual problems. This Second Edition has been thoroughly revised, incorporating current optimization techniques as well as the improved MATLAB® tools. Two important new features of the text are: Introduction to the scan and zoom method, providing a simple, effective technique that works for unconstrained, constrained, and global optimization problems New chapter, Hybrid Mathematics: An Application, using examples to illustrate how optimization can develop analytical or explicit solutions to differential systems and data-fitting problems Each chapter ends with a set of problems that give readers an opportunity to put their new skills into practice. Almost all of the numerical techniques covered in the text are supported by MATLAB® code, which readers can download on the text's companion Web site www.wiley.com/go/venkat2e and use to begin solving problems on their own. This text is recommended for upper-level undergraduate and graduate students in all areas of engineering as well as other disciplines that use optimization techniques to solve design problems.

Understanding Digital Signal Processing with MATLAB® and Solutions

Understanding Digital Signal Processing with MATLAB® and Solutions PDF Author: Alexander D. Poularikas
Publisher: CRC Press
ISBN: 1351623281
Category : Mathematics
Languages : en
Pages : 472

Book Description
The book discusses receiving signals that most electrical engineers detect and study. The vast majority of signals could never be detected due to random additive signals, known as noise, that distorts them or completely overshadows them. Such examples include an audio signal of the pilot communicating with the ground over the engine noise or a bioengineer listening for a fetus’ heartbeat over the mother’s. The text presents the methods for extracting the desired signals from the noise. Each new development includes examples and exercises that use MATLAB to provide the answer in graphic forms for the reader's comprehension and understanding.

Getting Started with MATLAB

Getting Started with MATLAB PDF Author: Rudra Pratap
Publisher: Oxford University Press, USA
ISBN:
Category : Engineering Mathematics
Languages : en
Pages : 260

Book Description
MATLAB is one of the most widely used tools in the field of engineering today. Its broad appeal lies in its interactive environment with hundreds of built-in functions. This book is designed to get you up and running in just a few hours.

Understanding MATLAB

Understanding MATLAB PDF Author: S. N. Alam
Publisher:
ISBN: 9789382332336
Category :
Languages : en
Pages : 0

Book Description
This book is aimed at students and professionals who are trying to learn MATLAB through self-study. It teaches readers how to write MATLAB programmes in order to solve problems. Plots, matrix calculations, vectors, loops, functions, solving linear equations, integration, differentiation, ordinary differential equations, curve fitting, image processing, and animation are all dealt with.

An Introduction to Programming and Numerical Methods in MATLAB

An Introduction to Programming and Numerical Methods in MATLAB PDF Author: Stephen Robert Otto
Publisher: Springer Science & Business Media
ISBN: 9781852339197
Category : Business & Economics
Languages : en
Pages : 486

Book Description
An elementary first course for students in mathematics and engineering Practical in approach: examples of code are provided for students to debug, and tasks – with full solutions – are provided at the end of each chapter Includes a glossary of useful terms, with each term supported by an example of the syntaxes commonly encountered

Understanding Complex Ecosystem Dynamics

Understanding Complex Ecosystem Dynamics PDF Author: William S. Yackinous
Publisher: Academic Press
ISBN: 0128020636
Category : Science
Languages : en
Pages : 436

Book Description
Understanding Complex Ecosystem Dynamics: A Systems and Engineering Perspective takes a fresh, interdisciplinary perspective on complex system dynamics, beginning with a discussion of relevant systems and engineering skills and practices, including an explanation of the systems approach and its major elements. From this perspective, the author formulates an ecosystem dynamics functionality-based framework to guide ecological investigations. Next, because complex system theory (across many subject matter areas) is crucial to the work of this book, relevant network theory, nonlinear dynamics theory, cellular automata theory, and roughness (fractal) theory is covered in some detail. This material serves as an important resource as the book proceeds. In the context of all of the foregoing discussion and investigation, a view of the characteristics of ecological network dynamics is constructed. This view, in turn, is the basis for the central hypothesis of the book, i.e., ecological networks are ever-changing networks with propagation dynamics that are punctuated, local-to-global, and perhaps most importantly fractal. To analyze and fully test this hypothesis, an innovative ecological network dynamics model is defined, designed, and developed. The modeling approach, which seeks to emulate features of real-world ecological networks, does not make a priori assumptions about ecological network dynamics, but rather lets the dynamics develop as the model simulation runs. Model analysis results corroborate the central hypothesis. Additional important insights and principles are suggested by the model analysis results and by the other supporting investigations of this book – and can serve as a basis for going-forward complex system dynamics research, not only for ecological systems but for complex systems in general. Provides a fresh interdisciplinary perspective, offers a broad integrated development, and contains many new ideas Clearly explains the elements of the systems approach and applies them throughout the book Takes on the challenging and open issues of complex system network dynamics Develops and utilizes a new, innovative ecosystem dynamics modeling approach Contains over 135 graphic illustrations to help the reader visualize and understand important concepts

The Elements of MATLAB Style

The Elements of MATLAB Style PDF Author: Richard K. Johnson
Publisher: Cambridge University Press
ISBN: 1139496409
Category : Computers
Languages : en
Pages : 181

Book Description
The Elements of MATLAB Style is a guide for both new and experienced MATLAB programmers. It provides a comprehensive collection of standards and guidelines for creating solid MATLAB code that will be easy to understand, enhance, and maintain. It is written for both individuals and those working in teams in which consistency is critical. This is the only book devoted to MATLAB style and best programming practices, focusing on how MATLAB code can be written in order to maximize its effectiveness. Just as Strunk and White's The Elements of Style provides rules for writing in the English language, this book provides conventions for formatting, naming, documentation, programming and testing. It includes many concise examples of correct and incorrect usage, as well as coverage of the latest language features. The author also provides recommendations on use of the integrated development environment features that help produce better, more consistent software.

Intuitive Understanding of Kalman Filtering with MATLAB®

Intuitive Understanding of Kalman Filtering with MATLAB® PDF Author: Armando Barreto
Publisher: CRC Press
ISBN: 0429577567
Category : Computers
Languages : en
Pages : 230

Book Description
The emergence of affordable micro sensors, such as MEMS Inertial Measurement Systems, are applied in embedded systems and Internet-of-Things devices. This has brought techniques such as Kalman Filtering, which are capable of combining information from multiple sensors or sources, to the interest of students and hobbyists. This book will explore the necessary background concepts, helping a much wider audience of readers develop an understanding and intuition that will enable them to follow the explanation for the Kalman Filtering algorithm. Key Features: Provides intuitive understanding of Kalman Filtering approach Succinct overview of concepts to enhance accessibility and appeal to a wide audience Interactive learning techniques with code examples Malek Adjouadi, PhD, is Ware Professor with the Department of Electrical and Computer Engineering at Florida International University, Miami. He received his PhD from the Electrical Engineering Department at the University of Florida, Gainesville. He is the Founding Director of the Center for Advanced Technology and Education funded by the National Science Foundation. His earlier work on computer vision to help persons with blindness led to his testimony to the U.S. Senate on the committee of Veterans Affairs on the subject of technology to help persons with disabilities. His research interests are in imaging, signal processing and machine learning, with applications in brain research and assistive technology. Armando Barreto, PhD, is Professor of the Electrical and Computer Engineering Department at Florida International University, Miami, as well as the Director of FIU’s Digital Signal Processing Laboratory, with more than 25 years of experience teaching DSP to undergraduate and graduate students. He earned his PhD in electrical engineering from the University of Florida, Gainesville. His work has focused on applying DSP techniques to the facilitation of human-computer interactions, particularly for the benefit of individuals with disabilities. He has developed human-computer interfaces based on the processing of signals and has developed a system that adds spatialized sounds to the icons in a computer interface to facilitate access by individuals with "low vision." With his research team, he has explored the use of Magnetic, Angular-Rate and Gravity (MARG) sensor modules and Inertial Measurement Units (IMUs) for human-computer interaction applications. He is a senior member of the Institute of Electrical and Electronics Engineers (IEEE) and the Association for Computing Machinery (ACM). Francisco R. Ortega, PhD, is an Assistant Professor at Colorado State University and Director of the Natural User Interaction Lab (NUILAB). Dr. Ortega earned his PhD in Computer Science (CS) in the field of Human-Computer Interaction (HCI) and 3D User Interfaces (3DUI) from Florida International University (FIU). He also held a position of Post-Doc and Visiting Assistant Professor at FIU. His main research area focuses on improving user interaction in 3DUI by (a) eliciting (hand and full-body) gesture and multimodal interactions, (b) developing techniques for multimodal interaction, and (c) developing interactive multimodal recognition systems. His secondary research aims to discover how to increase interest for CS in non-CS entry-level college students via virtual and augmented reality games. His research has resulted in multiple peer-reviewed publications in venues such as ACM ISS, ACM SUI, and IEEE 3DUI, among others. He is the first-author of the CRC Press book Interaction Design for 3D User Interfaces: The World of Modern Input Devices for Research, Applications and Game Development. Nonnarit O-larnnithipong, PhD, is an Instructor at Florida International University. Dr. O-larnnithipong earned his PhD in Electrical Engineering, majoring in Digital Signal Processing from Florida International University (FIU). He also held a position of Post-Doctoral Associate at FIU in 2019. His research has focused on (1) implementing the sensor fusion algorithm to improve orientation measurement using MEMS inertial and magnetic sensors and (2) developing a 3D hand motion tracking system using Inertial Measurement Units (IMUs) and infrared cameras. His research has resulted in multiple peer-reviewed publications in venues such as HCI-International and IEEE Sensors.

Understanding the Discrete Element Method

Understanding the Discrete Element Method PDF Author: Hans-Georg Matuttis
Publisher: John Wiley & Sons
ISBN: 111856720X
Category : Science
Languages : en
Pages : 484

Book Description
Gives readers a more thorough understanding of DEM and equips researchers for independent work and an ability to judge methods related to simulation of polygonal particles Introduces DEM from the fundamental concepts (theoretical mechanics and solidstate physics), with 2D and 3D simulation methods for polygonal particles Provides the fundamentals of coding discrete element method (DEM) requiring little advance knowledge of granular matter or numerical simulation Highlights the numerical tricks and pitfalls that are usually only realized after years of experience, with relevant simple experiments as applications Presents a logical approach starting withthe mechanical and physical bases,followed by a description of the techniques and finally their applications Written by a key author presenting ideas on how to model the dynamics of angular particles using polygons and polyhedral Accompanying website includes MATLAB-Programs providing the simulation code for two-dimensional polygons Recommended for researchers and graduate students who deal with particle models in areas such as fluid dynamics, multi-body engineering, finite-element methods, the geosciences, and multi-scale physics.