Affect in Mathematical Modeling PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Affect in Mathematical Modeling PDF full book. Access full book title Affect in Mathematical Modeling by Scott A. Chamberlin. Download full books in PDF and EPUB format.

Affect in Mathematical Modeling

Affect in Mathematical Modeling PDF Author: Scott A. Chamberlin
Publisher: Springer
ISBN: 3030044327
Category : Education
Languages : en
Pages : 325

Book Description
In the book, the relationship between affect and modeling is discussed because, as educational psychologists have suggested for decades, affect directly influences achievement. Moreover, given the importance of mathematical modeling and the applications to high level mathematics, it provides the field of mathematics psychology with insight regarding affect, in relation to mathematical modeling. By doing so it helps determine the degree to which understanding of mathematics and understanding affect in mathematical modeling episodes may have a direct effect on cognition.

Affect in Mathematical Modeling

Affect in Mathematical Modeling PDF Author: Scott A. Chamberlin
Publisher: Springer
ISBN: 3030044327
Category : Education
Languages : en
Pages : 325

Book Description
In the book, the relationship between affect and modeling is discussed because, as educational psychologists have suggested for decades, affect directly influences achievement. Moreover, given the importance of mathematical modeling and the applications to high level mathematics, it provides the field of mathematics psychology with insight regarding affect, in relation to mathematical modeling. By doing so it helps determine the degree to which understanding of mathematics and understanding affect in mathematical modeling episodes may have a direct effect on cognition.

Affect and Mathematical Problem Solving

Affect and Mathematical Problem Solving PDF Author: Douglas B. McLeod
Publisher: Springer Science & Business Media
ISBN: 1461236142
Category : Mathematics
Languages : en
Pages : 246

Book Description
Research on cognitive aspects of mathematical problem solving has made great progress in recent years, but the relationship of affective factors to problem-solving performance has been a neglected research area. The purpose of Affect and Mathematical Problem Solving: A New Perspective is to show how the theories and methods of cognitive science can be extended to include the role of affect in mathematical problem solving. The book presents Mandler's theory of emotion and explores its implications for the learning and teaching of mathematical problem solving. Also, leading researchers from mathematics, education, and psychology report how they have integrated affect into their own cognitive research. The studies focus on metacognitive processes, aesthetic influences on expert problem solvers, teacher decision-making, technology and teaching problem solving, and beliefs about mathematics. The results suggest how emotional factors like anxiety, frustration, joy, and satisfaction can help or hinder performance in problem solving.

Foundations for the Future in Mathematics Education

Foundations for the Future in Mathematics Education PDF Author: Richard A. Lesh
Publisher: Routledge
ISBN: 1000149501
Category : Education
Languages : en
Pages : 437

Book Description
The central question addressed in Foundations for the Future in Mathematics Education is this: What kind of understandings and abilities should be emphasized to decrease mismatches between the narrow band of mathematical understandings and abilities that are emphasized in mathematics classrooms and tests, and those that are needed for success beyond school in the 21st century? This is an urgent question. In fields ranging from aeronautical engineering to agriculture, and from biotechnologies to business administration, outside advisors to future-oriented university programs increasingly emphasize the fact that, beyond school, the nature of problem-solving activities has changed dramatically during the past twenty years, as powerful tools for computation, conceptualization, and communication have led to fundamental changes in the levels and types of mathematical understandings and abilities that are needed for success in such fields. For K-12 students and teachers, questions about the changing nature of mathematics (and mathematical thinking beyond school) might be rephrased to ask: If the goal is to create a mathematics curriculum that will be adequate to prepare students for informed citizenship—as well as preparing them for career opportunities in learning organizations, in knowledge economies, in an age of increasing globalization—how should traditional conceptions of the 3Rs be extended or reconceived? Overall, this book suggests that it is not enough to simply make incremental changes in the existing curriculum whose traditions developed out of the needs of industrial societies. The authors, beyond simply stating conclusions from their research, use results from it to describe promising directions for a research agenda related to this question. The volume is organized in three sections: *Part I focuses on naturalistic observations aimed at clarifying what kind of “mathematical thinking” people really do when they are engaged in “real life” problem solving or decision making situations beyond school. *Part II shifts attention toward changes that have occurred in kinds of elementary-but-powerful mathematical concepts, topics, and tools that have evolved recently—and that could replace past notions of “basics” by providing new foundations for the future. This section also initiates discussions about what it means to “understand” the preceding ideas and abilities. *Part III extends these discussions about meaning and understanding—and emphasizes teaching experiments aimed at investigating how instructional activities can be designed to facilitate the development of the preceding ideas and abilities. Foundations for the Future in Mathematics Education is an essential reference for researchers, curriculum developers, assessment experts, and teacher educators across the fields of mathematics and science education.

From beliefs to dynamic affect systems in mathematics education

From beliefs to dynamic affect systems in mathematics education PDF Author: Birgit Pepin
Publisher: Springer
ISBN: 9783319376431
Category : Education
Languages : en
Pages : 0

Book Description
This book connects seminal work in affect research and moves forward to provide a developing perspective on affect as the “decisive variable” of the mathematics classroom. In particular, the book contributes and investigates new conceptual frameworks and new methodological ‘tools’ in affect research and introduces the new field of ‘collectives’ to explore affect systems in diverse settings. Investigated by internationally renowned scholars, the book is build up in three dimensions. The first part of the book provides an overview of selected theoretical frames - theoretical lenses - to study the mosaic of relationships and interactions in the field of affect. In the second part the theory is enriched by empirical research studies and provides relevant findings in terms of developing deeper understandings of individuals’ and collectives’ affective systems in mathematics education. Here pupil and teacher beliefs and affect systems are examined more closely. The final part investigates the methodological tools used and needed in affect research. How can the different methodological designs contribute data which help us to develop better understandings of teachers’ and pupils’ affect systems for teaching and learning mathematics and in which ways are knowledge and affect related?

An Introduction to Mathematical Modeling

An Introduction to Mathematical Modeling PDF Author: Edward A. Bender
Publisher: Courier Corporation
ISBN: 0486137120
Category : Mathematics
Languages : en
Pages : 273

Book Description
Employing a practical, "learn by doing" approach, this first-rate text fosters the development of the skills beyond the pure mathematics needed to set up and manipulate mathematical models. The author draws on a diversity of fields — including science, engineering, and operations research — to provide over 100 reality-based examples. Students learn from the examples by applying mathematical methods to formulate, analyze, and criticize models. Extensive documentation, consisting of over 150 references, supplements the models, encouraging further research on models of particular interest. The lively and accessible text requires only minimal scientific background. Designed for senior college or beginning graduate-level students, it assumes only elementary calculus and basic probability theory for the first part, and ordinary differential equations and continuous probability for the second section. All problems require students to study and create models, encouraging their active participation rather than a mechanical approach. Beyond the classroom, this volume will prove interesting and rewarding to anyone concerned with the development of mathematical models or the application of modeling to problem solving in a wide array of applications.

A Course in Mathematical Modeling

A Course in Mathematical Modeling PDF Author: Douglas D. Mooney
Publisher: American Mathematical Soc.
ISBN: 088385712X
Category : Mathematics
Languages : en
Pages : 453

Book Description
The emphasis of this book lies in the teaching of mathematical modeling rather than simply presenting models. To this end the book starts with the simple discrete exponential growth model as a building block, and successively refines it. This involves adding variable growth rates, multiple variables, fitting growth rates to data, including random elements, testing exactness of fit, using computer simulations and moving to a continuous setting. No advanced knowledge is assumed of the reader, making this book suitable for elementary modeling courses. The book can also be used to supplement courses in linear algebra, differential equations, probability theory and statistics.

Modeling Students' Mathematical Modeling Competencies

Modeling Students' Mathematical Modeling Competencies PDF Author: Richard Lesh
Publisher: Springer Science & Business Media
ISBN: 1441905618
Category : Education
Languages : en
Pages : 632

Book Description
As we enter the 21st century, there is an urgent need for new approaches to mathematics education emphasizing its relevance in young learners’ futures. Modeling Students’ Mathematical Modeling Competencies explores the vital trend toward using real-world problems as a basis for teaching mathematics skills, competencies, and applications. Blending theoretical constructs and practical considerations, the book presents papers from the latest conference of the ICTMA, beginning with the basics (Why are models necessary? Where can we find them?) and moving through intricate concepts of how students perceive math, how instructors teach—and how both can become better learners. Dispatches as varied as classroom case studies, analyses of math in engineering work, and an in-depth review of modeling-based curricula in the Netherlands illustrate modeling activities on the job, methods of overcoming math resistance, and the movement toward replicable models and lifelong engagement. A sampling of topics covered: How students recognize the usefulness of mathematics Creating the modeling-oriented classroom Assessing and evaluating students’ modeling capabilities The relationship between modeling and problem-solving Instructor methods for developing their own models of modeling New technologies for modeling in the classroom Modeling Students’ Mathematical Modeling Competencies offers welcome clarity and focus to the international research and professional community in mathematics, science, and engineering education, as well as those involved in the sciences of teaching and learning these subjects.

Traditions in German-Speaking Mathematics Education Research

Traditions in German-Speaking Mathematics Education Research PDF Author: Lisa Hefendehl-Hebeker
Publisher:
ISBN: 9781013271830
Category : Education
Languages : en
Pages : 282

Book Description
This open access book shares revealing insights into the development of mathematics education research in Germany from 1976 (ICME 3 in Karlsruhe) to 2016 (ICME 13 in Hamburg). How did mathematics education research evolve in the course of these four decades? Which ideas and people were most influential, and how did German research interact with the international community? These questions are answered by scholars from a range of fields and in ten thematic sections: (1) a short survey of the development of educational research on mathematics in German speaking countries (2) subject-matter didactics, (3) design science and design research, (4) modelling, (5) mathematics and Bildung 1810 to 1850, (6) Allgemeinbildung, Mathematical Literacy, and Competence Orientation (7) theory traditions, (8) classroom studies, (9) educational research and (10) large-scale studies. During the time span presented here, profound changes took place in German-speaking mathematics education research. Besides the traditional fields of activity like subject-matter didactics or design science, completely new areas also emerged, which are characterized by various empirical approaches and a closer connection to psychology, sociology, epistemology and general education research. Each chapter presents a respective area of mathematics education in Germany and analyzes its relevance for the development of the research community, not only with regard to research findings and methods but also in terms of interaction with the educational system. One of the central aspects in all chapters concerns the constant efforts to find common ground between mathematics and education. In addition, readers can benefit from this analysis by comparing the development shown here with the mathematical education research situation in their own country. This work was published by Saint Philip Street Press pursuant to a Creative Commons license permitting commercial use. All rights not granted by the work's license are retained by the author or authors.

Mathematical Modeling and Simulation

Mathematical Modeling and Simulation PDF Author: Kai Velten
Publisher: John Wiley & Sons
ISBN: 3527627618
Category : Science
Languages : en
Pages : 362

Book Description
This concise and clear introduction to the topic requires only basic knowledge of calculus and linear algebra - all other concepts and ideas are developed in the course of the book. Lucidly written so as to appeal to undergraduates and practitioners alike, it enables readers to set up simple mathematical models on their own and to interpret their results and those of others critically. To achieve this, many examples have been chosen from various fields, such as biology, ecology, economics, medicine, agricultural, chemical, electrical, mechanical and process engineering, which are subsequently discussed in detail. Based on the author`s modeling and simulation experience in science and engineering and as a consultant, the book answers such basic questions as: What is a mathematical model? What types of models do exist? Which model is appropriate for a particular problem? What are simulation, parameter estimation, and validation? The book relies exclusively upon open-source software which is available to everybody free of charge. The entire book software - including 3D CFD and structural mechanics simulation software - can be used based on a free CAELinux-Live-DVD that is available in the Internet (works on most machines and operating systems).

Research Directions in Computational Mechanics

Research Directions in Computational Mechanics PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309046483
Category : Technology & Engineering
Languages : en
Pages : 145

Book Description
Computational mechanics is a scientific discipline that marries physics, computers, and mathematics to emulate natural physical phenomena. It is a technology that allows scientists to study and predict the performance of various productsâ€"important for research and development in the industrialized world. This book describes current trends and future research directions in computational mechanics in areas where gaps exist in current knowledge and where major advances are crucial to continued technological developments in the United States.