Linear Algebra: Theory, Intuition, Code

Linear Algebra: Theory, Intuition, Code PDF Author: Mike X. Cohen
Publisher:
ISBN: 9789083136608
Category : Mathematics
Languages : en
Pages : 584

Book Description
Linear algebra is perhaps the most important branch of mathematics for computational sciences, including machine learning, AI, data science, statistics, simulations, computer graphics, multivariate analyses, matrix decompositions, signal processing, and so on.The way linear algebra is presented in traditional textbooks is different from how professionals use linear algebra in computers to solve real-world applications in machine learning, data science, statistics, and signal processing. For example, the "determinant" of a matrix is important for linear algebra theory, but should you actually use the determinant in practical applications? The answer may surprise you!If you are interested in learning the mathematical concepts linear algebra and matrix analysis, but also want to apply those concepts to data analyses on computers (e.g., statistics or signal processing), then this book is for you. You'll see all the math concepts implemented in MATLAB and in Python.Unique aspects of this book: - Clear and comprehensible explanations of concepts and theories in linear algebra. - Several distinct explanations of the same ideas, which is a proven technique for learning. - Visualization using graphs, which strengthens the geometric intuition of linear algebra. - Implementations in MATLAB and Python. Com'on, in the real world, you never solve math problems by hand! You need to know how to implement math in software! - Beginner to intermediate topics, including vectors, matrix multiplications, least-squares projections, eigendecomposition, and singular-value decomposition. - Strong focus on modern applications-oriented aspects of linear algebra and matrix analysis. - Intuitive visual explanations of diagonalization, eigenvalues and eigenvectors, and singular value decomposition. - Codes (MATLAB and Python) are provided to help you understand and apply linear algebra concepts on computers. - A combination of hand-solved exercises and more advanced code challenges. Math is not a spectator sport!

Concise Introduction to Linear Algebra

Concise Introduction to Linear Algebra PDF Author: Qingwen Hu
Publisher: CRC Press
ISBN: 1351697463
Category : Mathematics
Languages : en
Pages : 220

Book Description
Concise Introduction to Linear Algebra deals with the subject of linear algebra, covering vectors and linear systems, vector spaces, orthogonality, determinants, eigenvalues and eigenvectors, singular value decomposition. It adopts an efficient approach to lead students from vectors, matrices quickly into more advanced topics including, LU decomposition, orthogonal decomposition, Least squares solutions, Gram-Schmidt process, eigenvalues and eigenvectors, diagonalizability, spectral decomposition, positive definite matrix, quadratic forms, singular value decompositions and principal component analysis. This book is designed for onesemester teaching to undergraduate students.

Problems In Linear Algebra And Matrix Theory

Problems In Linear Algebra And Matrix Theory PDF Author: Fuzhen Zhang
Publisher: World Scientific
ISBN: 981123910X
Category : Mathematics
Languages : en
Pages : 477

Book Description
This is the revised and expanded edition of the problem book Linear Algebra: Challenging Problems for Students, now entitled Problems in Linear Algebra and Matrix Theory. This new edition contains about fifty-five examples and many new problems, based on the author's lecture notes of Advanced Linear Algebra classes at Nova Southeastern University (NSU-Florida) and short lectures Matrix Gems at Shanghai University and Beijing Normal University.The book is intended for upper division undergraduate and beginning graduate students, and it can be used as text or supplement for a second course in linear algebra. Each chapter starts with Definitions, Facts, and Examples, followed by problems. Hints and solutions to all problems are also provided.

Linear Algebra

Linear Algebra PDF Author: Richard C. Penney
Publisher: John Wiley & Sons
ISBN: 1118909593
Category : Mathematics
Languages : en
Pages : 512

Book Description
Praise for the Third Edition “This volume is ground-breaking in terms of mathematical texts in that it does not teach from a detached perspective, but instead, looks to show students that competent mathematicians bring an intuitive understanding to the subject rather than just a master of applications.” – Electric Review A comprehensive introduction, Linear Algebra: Ideas and Applications, Fourth Edition provides a discussion of the theory and applications of linear algebra that blends abstract and computational concepts. With a focus on the development of mathematical intuition, the book emphasizes the need to understand both the applications of a particular technique and the mathematical ideas underlying the technique. The book introduces each new concept in the context of an explicit numerical example, which allows the abstract concepts to grow organically out of the necessity to solve specific problems. The intuitive discussions are consistently followed by rigorous statements of results and proofs. Linear Algebra: Ideas and Applications, Fourth Edition also features: Two new and independent sections on the rapidly developing subject of wavelets A thoroughly updated section on electrical circuit theory Illuminating applications of linear algebra with self-study questions for additional study End-of-chapter summaries and sections with true-false questions to aid readers with further comprehension of the presented material Numerous computer exercises throughout using MATLAB® code Linear Algebra: Ideas and Applications, Fourth Edition is an excellent undergraduate-level textbook for one or two semester courses for students majoring in mathematics, science, computer science, and engineering. With an emphasis on intuition development, the book is also an ideal self-study reference.

A Geometric Introduction to Linear Algebra

A Geometric Introduction to Linear Algebra PDF Author: Daniel Pedoe
Publisher:
ISBN:
Category : Algebras, Linear
Languages : en
Pages : 246

Book Description


Linear Algebra for Quantum Theory

Linear Algebra for Quantum Theory PDF Author: Per-Olov Löwdin
Publisher: Wiley-Interscience
ISBN: 9780471199588
Category : Science
Languages : en
Pages : 0

Book Description
Essential mathematical tools for the study of modern quantumtheory. Linear Algebra for Quantum Theory offers an excellent survey ofthose aspects of set theory and the theory of linear spaces andtheir mappings that are indispensable to the study of quantumtheory. Unlike more conventional treatments, this text postponesits discussion of the binary product concept until later chapters,thus allowing many important properties of the mappings to bederived without it. The book begins with a thorough exploration of set theoryfundamentals, including mappings, cardinalities of sets, andarithmetic and theory of complex numbers. Next is an introductionto linear spaces, with coverage of linear operators, eigenvalue andthe stability problem of linear operators, and matrices withspecial properties. Material on binary product spaces features self-adjoint operatorsin a space of indefinite metric, binary product spaces with apositive definite metric, properties of the Hilbert space, andmore. The final section is devoted to axioms of quantum theoryformulated as trace algebra. Throughout, chapter-end problem setshelp reinforce absorption of the material while letting readerstest their problem-solving skills. Ideal for advanced undergraduate and graduate students intheoretical and computational chemistry and physics, Linear Algebrafor Quantum Theory provides the mathematical means necessary toaccess and understand the complex world of quantum theory.

Introduction to Linear and Matrix Algebra

Introduction to Linear and Matrix Algebra PDF Author: Nathaniel Johnston
Publisher: Springer Nature
ISBN: 3030528111
Category : Mathematics
Languages : en
Pages : 482

Book Description
This textbook emphasizes the interplay between algebra and geometry to motivate the study of linear algebra. Matrices and linear transformations are presented as two sides of the same coin, with their connection motivating inquiry throughout the book. By focusing on this interface, the author offers a conceptual appreciation of the mathematics that is at the heart of further theory and applications. Those continuing to a second course in linear algebra will appreciate the companion volume Advanced Linear and Matrix Algebra. Starting with an introduction to vectors, matrices, and linear transformations, the book focuses on building a geometric intuition of what these tools represent. Linear systems offer a powerful application of the ideas seen so far, and lead onto the introduction of subspaces, linear independence, bases, and rank. Investigation then focuses on the algebraic properties of matrices that illuminate the geometry of the linear transformations that they represent. Determinants, eigenvalues, and eigenvectors all benefit from this geometric viewpoint. Throughout, “Extra Topic” sections augment the core content with a wide range of ideas and applications, from linear programming, to power iteration and linear recurrence relations. Exercises of all levels accompany each section, including many designed to be tackled using computer software. Introduction to Linear and Matrix Algebra is ideal for an introductory proof-based linear algebra course. The engaging color presentation and frequent marginal notes showcase the author’s visual approach. Students are assumed to have completed one or two university-level mathematics courses, though calculus is not an explicit requirement. Instructors will appreciate the ample opportunities to choose topics that align with the needs of each classroom, and the online homework sets that are available through WeBWorK.

Introduction to Applied Linear Algebra

Introduction to Applied Linear Algebra PDF Author: Stephen Boyd
Publisher: Cambridge University Press
ISBN: 1316518965
Category : Business & Economics
Languages : en
Pages : 477

Book Description
A groundbreaking introduction to vectors, matrices, and least squares for engineering applications, offering a wealth of practical examples.

Coding the Matrix

Coding the Matrix PDF Author: Philip N. Klein
Publisher:
ISBN: 9780615856735
Category : Algebras, Linear
Languages : en
Pages : 530

Book Description
An engaging introduction to vectors and matrices and the algorithms that operate on them, intended for the student who knows how to program. Mathematical concepts and computational problems are motivated by applications in computer science. The reader learns by "doing," writing programs to implement the mathematical concepts and using them to carry out tasks and explore the applications. Examples include: error-correcting codes, transformations in graphics, face detection, encryption and secret-sharing, integer factoring, removing perspective from an image, PageRank (Google's ranking algorithm), and cancer detection from cell features. A companion web site, codingthematrix.com provides data and support code. Most of the assignments can be auto-graded online. Over two hundred illustrations, including a selection of relevant "xkcd" comics. Chapters: "The Function," "The Field," "The Vector," "The Vector Space," "The Matrix," "The Basis," "Dimension," "Gaussian Elimination," "The Inner Product," "Special Bases," "The Singular Value Decomposition," "The Eigenvector," "The Linear Program" A new edition of this text, incorporating corrections and an expanded index, has been issued as of September 4, 2013, and will soon be available on Amazon.

Linear Algebra: Theory and Applications

Linear Algebra: Theory and Applications PDF Author: Kenneth Kuttler
Publisher: The Saylor Foundation
ISBN:
Category : Mathematics
Languages : en
Pages : 503

Book Description
This is a book on linear algebra and matrix theory. While it is self contained, it will work best for those who have already had some exposure to linear algebra. It is also assumed that the reader has had calculus. Some optional topics require more analysis than this, however. I think that the subject of linear algebra is likely the most significant topic discussed in undergraduate mathematics courses. Part of the reason for this is its usefulness in unifying so many different topics. Linear algebra is essential in analysis, applied math, and even in theoretical mathematics. This is the point of view of this book, more than a presentation of linear algebra for its own sake. This is why there are numerous applications, some fairly unusual.