Numerical Experiments in Homogeneous Turbulence PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Numerical Experiments in Homogeneous Turbulence PDF full book. Access full book title Numerical Experiments in Homogeneous Turbulence by Robert Sugden Rogallo. Download full books in PDF and EPUB format.

Numerical Experiments in Homogeneous Turbulence

Numerical Experiments in Homogeneous Turbulence PDF Author: Robert Sugden Rogallo
Publisher:
ISBN:
Category : Turbulence
Languages : en
Pages : 98

Book Description


Numerical Experiments in Homogeneous Turbulence

Numerical Experiments in Homogeneous Turbulence PDF Author: Robert Sugden Rogallo
Publisher:
ISBN:
Category : Turbulence
Languages : en
Pages : 98

Book Description


Numerical Experiments on the Structure of Homogeneous Turbulence

Numerical Experiments on the Structure of Homogeneous Turbulence PDF Author: Moon Joo Lee
Publisher:
ISBN:
Category : Turbulence
Languages : en
Pages : 318

Book Description


Homogeneous Turbulence Dynamics

Homogeneous Turbulence Dynamics PDF Author: Pierre Sagaut
Publisher: Springer
ISBN: 3319731629
Category : Science
Languages : en
Pages : 897

Book Description
This book provides state-of-the-art results and theories in homogeneous turbulence, including anisotropy and compressibility effects with extension to quantum turbulence, magneto-hydodynamic turbulence and turbulence in non-newtonian fluids. Each chapter is devoted to a given type of interaction (strain, rotation, shear, etc.), and presents and compares experimental data, numerical results, analysis of the Reynolds stress budget equations and advanced multipoint spectral theories. The role of both linear and non-linear mechanisms is emphasized. The link between the statistical properties and the dynamics of coherent structures is also addressed. Despite its restriction to homogeneous turbulence, the book is of interest to all people working in turbulence, since the basic physical mechanisms which are present in all turbulent flows are explained. The reader will find a unified presentation of the results and a clear presentation of existing controversies. Special attention is given to bridge the results obtained in different research communities. Mathematical tools and advanced physical models are detailed in dedicated chapters.

Studies in Turbulence

Studies in Turbulence PDF Author: Thomas B. Gatski
Publisher: Springer Science & Business Media
ISBN: 1461227925
Category : Science
Languages : en
Pages : 609

Book Description
This book contains contributions by former students, colleagues and friends of Professor John L. Lumley, on the occasion of his 60th birthday, in recognition of his enormous impact on the advancement of turbulence research. A variety of experimental, computational and theoretical topics, including turbulence modeling, direct numerical simulations, compressible turbulence, turbulent shear flows, coherent structures and the Proper Orthogonal Decomposition are contained herein. The diversity and scope of these contributions are further acknowledgment of John Lumley's wide ranging influence in the field of turbulence. The large number of contributions by the authors, many of whom were participants in The Lumley Symposium: Recent Developments in Turbulence (held at ICASE, NASA Langley Research Center on November 12 & 13, 1990), has presented us with the unique opportu nity to select a few numerical and theoretical papers for inclusion in the journal Theoretical and Computational Fluid Dynamics for which Professor Lumley serves as Editor. Extended Abstracts of these pa pers are included in this volume and are appropriately marked. The special issue of TCFD will appear this year and will serve as an additional tribute to John Lumley. As is usually the case, the efforts of others have significantly eased our tasks. We would like to express our deep appreciation to Drs. R.

Turbulence

Turbulence PDF Author: Christophe Bailly
Publisher: Springer
ISBN: 3319161601
Category : Technology & Engineering
Languages : en
Pages : 360

Book Description
This book covers the major problems of turbulence and turbulent processes, including physical phenomena, their modeling and their simulation. After a general introduction in Chapter 1 illustrating many aspects dealing with turbulent flows, averaged equations and kinetic energy budgets are provided in Chapter 2. The concept of turbulent viscosity as a closure of the Reynolds stress is also introduced. Wall-bounded flows are presented in Chapter 3 and aspects specific to boundary layers and channel or pipe flows are also pointed out. Free shear flows, namely free jets and wakes, are considered in Chapter 4. Chapter 5 deals with vortex dynamics. Homogeneous turbulence, isotropy and dynamics of isotropic turbulence are presented in Chapters 6 and 7. Turbulence is then described both in the physical space and in the wave number space. Time dependent numerical simulations are presented in Chapter 8, where an introduction to large eddy simulation is offered. The last three chapters of the book summarize remarkable digital techniques current and experimental. Many results are presented in a practical way, based on both experiments and numerical simulations. The book is written for a advanced engineering students as well as postgraduate engineers and researchers. For students, it contains the essential results as well as details and demonstrations whose oral transmission is often tedious. At a more advanced level, the text provides numerous references which allow readers to find quickly further study regarding their work and to acquire a deeper knowledge on topics of interest.

Turbulent Flows

Turbulent Flows PDF Author: G. Biswas
Publisher: CRC Press
ISBN: 9780849310140
Category : Technology & Engineering
Languages : en
Pages : 478

Book Description
This book allows readers to tackle the challenges of turbulent flow problems with confidence. It covers the fundamentals of turbulence, various modeling approaches, and experimental studies. The fundamentals section includes isotropic turbulence and anistropic turbulence, turbulent flow dynamics, free shear layers, turbulent boundary layers and plumes. The modeling section focuses on topics such as eddy viscosity models, standard K-E Models, Direct Numerical Stimulation, Large Eddy Simulation, and their applications. The measurement of turbulent fluctuations experiments in isothermal and stratified turbulent flows are explored in the experimental methods section. Special topics include modeling of near wall turbulent flows, compressible turbulent flows, and more.

Homogeneous, Isotropic Turbulence

Homogeneous, Isotropic Turbulence PDF Author: W. David McComb
Publisher: OUP Oxford
ISBN: 0191003611
Category : Mathematics
Languages : en
Pages : 400

Book Description
Fluid turbulence is often referred to as `the unsolved problem of classical physics'. Yet, paradoxically, its mathematical description resembles quantum field theory. The present book addresses the idealised problem posed by homogeneous, isotropic turbulence, in order to concentrate on the fundamental aspects of the general problem. It is written from the perspective of a theoretical physicist, but is designed to be accessible to all researchers in turbulence, both theoretical and experimental, and from all disciplines. The book is in three parts, and begins with a very simple overview of the basic statistical closure problem, along with a summary of current theoretical approaches. This is followed by a precise formulation of the statistical problem, along with a complete set of mathematical tools (as needed in the rest of the book), and a summary of the generally accepted phenomenology of the subject. Part 2 deals with current issues in phenomenology, including the role of Galilean invariance, the physics of energy transfer, and the fundamental problems inherent in numerical simulation. Part 3 deals with renormalization methods, with an emphasis on the taxonomy of the subject, rather than on lengthy mathematical derivations. The book concludes with some discussion of current lines of research and is supplemented by three appendices containing detailed mathematical treatments of the effect of isotropy on correlations, the properties of Gaussian distributions, and the evaluation of coefficients in statistical theories.

The Theory of Homogeneous Turbulence

The Theory of Homogeneous Turbulence PDF Author: G. K. Batchelor
Publisher: Cambridge University Press
ISBN: 9780521041171
Category : Mathematics
Languages : en
Pages : 216

Book Description
This is a reissue of Professor Batchelor's text on the theory of turbulent motion, which was first published by Cambridge Unviersity Press in 1953. It continues to be widely referred to in the professional literature of fluid mechanics, but has not been available for several years. This classic account includes an introduction to the study of homogeneous turbulence, including its mathematic representation and kinematics. Linear problems, such as the randomly-perturbed harmonic oscillator and turbulent flow through a wire gauze, are then treated. The author also presents the general dynamics of decay, universal equilibrium theory, and the decay of energy-containing eddies. There is a renewed interest in turbulent motion, which finds applications in atmospheric physics, fluid mechanics, astrophysics, and planetary science.

On the Prediction of Equilibrium States in Homogeneous Turbulence

On the Prediction of Equilibrium States in Homogeneous Turbulence PDF Author: Charles G. Speziale
Publisher:
ISBN:
Category :
Languages : en
Pages : 54

Book Description


The Statistical Mechanics of Ideal Homogeneous Turbulence

The Statistical Mechanics of Ideal Homogeneous Turbulence PDF Author: John V. Shebalin
Publisher:
ISBN:
Category : Ergodic theory
Languages : en
Pages : 136

Book Description
Plasmas, such as those found in the space environment or in plasma confinement devices, are often modeled as electrically conducting fluids. When fluids and plasmas are energetically stirred, regions of highly nonlinear, chaotic behavior known as turbulence arise. Understanding the fundamental nature of turbulence is a long-standing theoretical challenge. The present work describes a statistical theory concerning a certain class of nonlinear, finite dimensional, dynamical models of turbulence. These models arise when the partial differential equations describing incompressible, ideal (i.e., non-dissipative) homogeneous fluid and magnetofluid (i.e., plasma) turbulence are Fourier transformed into a very large set of ordinary differential equations. These equations define a divergenceless flow in a high-dimensional phase space, which allows for the existence of a Lionville theorem, guaranteeing a distribution function based on constants of the motion (integral invariants).