Pressure Retarded Osmosis

Pressure Retarded Osmosis PDF Author: Khaled Touati
Publisher: Academic Press
ISBN: 012812315X
Category : Science
Languages : en
Pages : 188

Book Description
Pressure Retarded Osmosis: Renewable Energy Generation and Recovery offers the first comprehensive resource on this method of generating renewable energy. Dr. Khaled Touati and the team of editors combine their expertise with contributions from other leaders in the field to create this well-rounded resource, which discusses and analyses this novel method of creating a controllable renewable energy. The promises of the PRO technique are first clearly presented and explained, and the authors then provide a comprehensive analysis of the issues that remain such as Concentration Polarization, Membrane Deformation, and Reverse Salt Diffusion. Possible solutions to these issues which often restrict industrial implementation are then discussed to mitigate these detrimental effects, and there is also an emphasis on the recovery of energy from desalination processes using PRO, which is able to reduce energy consumption and make it more economically and environmentally efficient. Combines research with experience to deliver a complete resource on Pressure Retarded Osmosis Discusses all areas of PRO in detail Offers solutions to problems commonly experienced and summarizes each method with a clear and concise conclusion Includes case studies from the Great Salt Lake (U.S.A) and Dead Sea (Asia), as well as other rivers from America, Europe, and Asia

Sustainable Energy from Salinity Gradients

Sustainable Energy from Salinity Gradients PDF Author: Andrea Cipollina
Publisher: Woodhead Publishing
ISBN: 0081003234
Category : Technology & Engineering
Languages : en
Pages : 362

Book Description
Salinity gradient energy, also known as blue energy and osmotic energy, is the energy obtainable from the difference in salt concentration between two feed solutions, typically sea water and river water. It is a large-scale renewable resource that can be harvested and converted to electricity. Efficient extraction of this energy is not straightforward, however. Sustainable Energy from Salinity Gradients provides a comprehensive review of resources, technologies and applications in this area of fast-growing interest. Key technologies covered include pressure retarded osmosis, reverse electrodialysis and accumulator mixing. Environmental and economic aspects are also considered, together with the possible synergies between desalination and salinity gradient energy technologies. Sustainable Energy from Salinity Gradients is an essential text for R&D professionals in the energy & water industry interested in salinity gradient power and researchers in academia from post-graduate level upwards. For more than ten years the Editors have been sharing substantial research activities in the fields of renewable energy and desalination, successfully participating to a number of European Union research projects and contributing to the relevant scientific literature with more than 100 papers and 2 books on Desalination technologies and their coupling with Renewable Energy. They are intensely working in the field of Salinity Gradient Power, carrying out research with specific focus o.n open-loop and closed-loop reverse electrodialysis and pressure retarded osmosis. Covers applications of pressure retarded osmosis, reverse electrodialysis, and capacitive mixing for salinity gradient power in one convenient volume Presents the environmental aspects and economics of salinity gradient energy Explores possible synergies between desalination and salinity gradient energy

Membrane-Based Salinity Gradient Processes for Water Treatment and Power Generation

Membrane-Based Salinity Gradient Processes for Water Treatment and Power Generation PDF Author: Sarper Sarp
Publisher: Elsevier
ISBN: 0444639624
Category : Technology & Engineering
Languages : en
Pages : 366

Book Description
Membrane-Based Salinity Gradient Processes for Water Treatment and Power Generation focuses on the various types of membrane- based salinity gradient processes that can be applied for desalination. Topics cover salinity gradient processes for desalination, such as Forward Osmosis (FO) and Pressure Retarded Osmosis (PRO), with chapters selected exclusively from a number of world-leading experts in various disciplines and from different continents. Sections include discussions on the theoretical and fundamental approaches to salinity gradient processes, various types of membrane materials and development, i.e., flat sheet and hollow fiber, various salinity water sources for an economically feasible process, and large-scale applications. Finally, the book focuses on economically feasible process optimization when both operational and capital costs are considered. Features specific details on salinity gradient techniques for various desalination applications of industrial and academic interest Contains unique discussions on membrane development and process optimization that normally only appear briefly in research articles Includes examples of internationally best practices for the evaluation of several system parameters, including thermodynamic optimization, high power density membrane development, and more Discusses large-scale applications and provides examples of such implementations, such as Statkraft, Japanese Megaton, and Korean GMVP

Membrane Technology for Osmotic Power Generation by Pressure Retarded Osmosis

Membrane Technology for Osmotic Power Generation by Pressure Retarded Osmosis PDF Author: Tai-Shung Chung
Publisher: CRC Press
ISBN: 100002783X
Category : Science
Languages : en
Pages : 303

Book Description
Osmotic energy can be effectively harvested through pressure retarded osmosis (PRO) which is the most widely investigated technology due to its greater efficiency and higher power density output and effective membranes are the heart of the PRO technology. This book will cover a broad range of topics, including PRO membranes, fouling, module fabrication, process design, process operation and maintenance. It summarizes the progress in PRO researches in the last decade, and points out the directions for future R&D and commercialization of PRO. It will be of great interest to membrane researcher, company and operators to understand and get insights into the state-of-the-art PRO technologies.

Osmosis Engineering

Osmosis Engineering PDF Author: Nidal Hilal
Publisher: Elsevier
ISBN: 0128231882
Category : Technology & Engineering
Languages : en
Pages : 389

Book Description
Osmosis Engineering provides a comprehensive overview of the state-of-the-art surrounding osmosis-based research and industrial applications. The book covers the underpinning theories, technology developments and commercial applications. Sections discuss innovative and advanced membranes and modules for osmosis separation processes (e.g., reverse osmosis, forward osmosis, pressure retarded osmosis, osmotic membrane distillation), different application of these osmosis separation processes for energy and water separation, such as the treatment of radioactive waste, oily wastewater and heavy metal removal, draw solutions, pretreatment technologies, fouling effects, the use of renewable energy driven osmotic processes, computational, environmental and economic studies, and more. Covers state-of-the-art osmotic engineering technologies and applications Presents multidisciplinary topics in engineered osmosis, including both fundamental and applied EO concepts Includes major challenges such as fouling mitigation, membrane development, pre-treatment and energy usage

Osmotically Driven Membrane Processes

Osmotically Driven Membrane Processes PDF Author: Hongbo Du
Publisher: BoD – Books on Demand
ISBN: 9535139215
Category : Technology & Engineering
Languages : en
Pages : 283

Book Description
Osmotically driven membrane processes (ODMPs) including forward osmosis (FO) and pressure-retarded osmosis (PRO) have attracted increasing attention in fields such as water treatment, desalination, power generation, and life science. In contrast to pressure-driven membrane processes, e.g., reverse osmosis, which typically employs applied high pressure as driving force, ODMPs take advantages of naturally generated osmotic pressure as the sole source of driving force. In light of this, ODMPs possess many advantages over pressure-driven membrane processes. The advantages include low energy consumption, ease of equipment maintenance, low capital investment, high salt rejection, and high water flux. In the past decade, over 300 academic papers on ODMPs have been published in a variety of application fields. The number of such publications is still rapidly growing. The ODMPs' approach, fabrications, recent development and applications in wastewater treatment, power generation, seawater desalination, and gas absorption are presented in this book.

Membrane Separation Principles and Applications

Membrane Separation Principles and Applications PDF Author: Ahmad Fauzi Ismail
Publisher: Elsevier
ISBN: 012812816X
Category : Science
Languages : en
Pages : 493

Book Description
Membrane Separation Principles and Applications: From Material Selection to Mechanisms and Industrial Uses, the latest volume in the Handbooks in Separation Science series, is the first single resource to explore all aspects of this rapidly growing area of study. Membrane technology is now accepted as one of the most effective tools for separation and purification, primarily due to its simple operation. The result has been a proliferation of studies on this topic; however, the relationships between fundamental knowledge and applications are rarely discussed. This book acts as a guideline for those who are interested in exploring membranes at a more progressive level. Covering methods of pressure driving force, partial pressure driving force, concentration driving force, electrical potential driving force, hybrid processes, and more, this volume is more complete than any other known resource on membrane separations. Covers membrane material selection, membrane fabrication, membrane characterization, separation mechanisms and applications in each chapter Authored by contributors who are internationally recognized as experts in their respective fields Organized by the driving force behind each type of membrane separation—a unique approach that more clearly links fundamental principles with their dominant applications

Membrane Technology for Osmotic Power Generation by Pressure Retarded Osmosis

Membrane Technology for Osmotic Power Generation by Pressure Retarded Osmosis PDF Author: Tai-Shung Chung
Publisher: CRC Press
ISBN: 1000027376
Category : Science
Languages : en
Pages : 347

Book Description
Osmotic energy can be effectively harvested through pressure retarded osmosis (PRO) which is the most widely investigated technology due to its greater efficiency and higher power density output and effective membranes are the heart of the PRO technology. This book will cover a broad range of topics, including PRO membranes, fouling, module fabrication, process design, process operation and maintenance. It summarizes the progress in PRO researches in the last decade, and points out the directions for future R&D and commercialization of PRO. It will be of great interest to membrane researcher, company and operators to understand and get insights into the state-of-the-art PRO technologies.

Membrane Contactor Technology

Membrane Contactor Technology PDF Author: Mohammad Younas
Publisher: John Wiley & Sons
ISBN: 3527348611
Category : Technology & Engineering
Languages : en
Pages : 372

Book Description
An eye-opening exploration of membrane contactors from a group of industry leaders In Membrane Contactor Technology: Water Treatment, Food Processing, Gas Separation, and Carbon Capture, an expert team of researchers delivers an up-to-date and insightful explanation of membrane contactor technology, including transport phenomena, design aspects, and diverse process applications. The book also includes explorations of membrane synthesis, process, and module design, as well as rarely discussed process modeling and simulation techniques. The authors discuss the technical and economic aspects of this increasingly important technology and examine the geometry, flow, energy and mass transport, and design aspects of membrane contactor modules. They also cover a wide range of application opportunities for this technology, from the materials sciences to process engineering. Membrane Contactor Technology also includes: A thorough introduction to the membrane contactor extraction process, including dispersion-free membrane extraction processes and supported liquid membrane processes Comprehensive explorations of membrane transport theory, including discussions of diffusional mass and heat transfer modeling, as well as numerical modeling In-depth examinations of module configuration and geometry, including design and flow configuration Practical discussions of modes or operation, including membrane distillation, osmotic evaporation, and forward osmosis Perfect for process engineers, biotechnologists, water chemists, and membrane scientists, Membrane Contactor Technology also belongs in the libraries of chemical engineers, polymer chemists, and chemists working in the environmental industry.

Process Intensification and Integration for Sustainable Design

Process Intensification and Integration for Sustainable Design PDF Author: Dominic C. Y. Foo
Publisher: John Wiley & Sons
ISBN: 3527818723
Category : Technology & Engineering
Languages : en
Pages : 344

Book Description
Presents comprehensive coverage of process intensification and integration for sustainable design, along with fundamental techniques and experiences from the industry Drawing from fundamental techniques and recent industrial experiences, this book discusses the many developments in process intensification and integration and focuses on increasing sustainability via several overarching topics such as Sustainable Manufacturing, Energy Saving Technologies, and Resource Conservation and Pollution Prevention Techniques. Process Intensification and Integration for Sustainable Design starts discussions on: shale gas as an option for the production of chemicals and challenges for process intensification; the design and techno-economic analysis of separation units to handle feedstock variability in shale gas treatment; RO-PRO desalination; and techno-economic and environmental assessment of ultrathin polysulfone membranes for oxygen-enriched combustion. Next, it looks at process intensification of membrane-based systems for water, energy, and environment applications; the design of internally heat-integrated distillation column (HIDiC); and graphical analysis and integration of heat exchanger networks with heat pumps. Decomposition and implementation of large-scale interplant heat integration is covered, as is the synthesis of combined heat and mass exchange networks (CHAMENs) with renewables. The book also covers optimization strategies for integrating and intensifying housing complexes; a sustainable biomass conversion process assessment; and more. Covers the many advances and changes in process intensification and integration Provides side-by-side discussions of fundamental techniques and recent industrial experiences to guide practitioners in their own processes Presents comprehensive coverage of topics relevant, among others, to the process industry, biorefineries, and plant energy management Offers insightful analysis and integration of reactor and heat exchanger network Looks at optimization of integrated water and multi-regenerator membrane systems involving multi-contaminants Process Intensification and Integration for Sustainable Design is an ideal book for process engineers, chemical engineers, engineering scientists, engineering consultants, and chemists.