Author: Michael S. Weiss
Publisher: American Mathematical Soc.
ISBN: 147040981X
Category : Mathematics
Languages : en
Pages : 122
Book Description
The structure space of a closed topological -manifold classifies bundles whose fibers are closed -manifolds equipped with a homotopy equivalence to . The authors construct a highly connected map from to a concoction of algebraic -theory and algebraic -theory spaces associated with . The construction refines the well-known surgery theoretic analysis of the block structure space of in terms of -theory.
Automorphisms of Manifolds and Algebraic $K$-Theory: Part III
Author: Michael S. Weiss
Publisher: American Mathematical Soc.
ISBN: 147040981X
Category : Mathematics
Languages : en
Pages : 122
Book Description
The structure space of a closed topological -manifold classifies bundles whose fibers are closed -manifolds equipped with a homotopy equivalence to . The authors construct a highly connected map from to a concoction of algebraic -theory and algebraic -theory spaces associated with . The construction refines the well-known surgery theoretic analysis of the block structure space of in terms of -theory.
Publisher: American Mathematical Soc.
ISBN: 147040981X
Category : Mathematics
Languages : en
Pages : 122
Book Description
The structure space of a closed topological -manifold classifies bundles whose fibers are closed -manifolds equipped with a homotopy equivalence to . The authors construct a highly connected map from to a concoction of algebraic -theory and algebraic -theory spaces associated with . The construction refines the well-known surgery theoretic analysis of the block structure space of in terms of -theory.
Automorphisms of manifolds and algebraic k-theory
The $K$-book
Author: Charles A. Weibel
Publisher: American Mathematical Soc.
ISBN: 0821891324
Category : Mathematics
Languages : en
Pages : 634
Book Description
Informally, $K$-theory is a tool for probing the structure of a mathematical object such as a ring or a topological space in terms of suitably parameterized vector spaces and producing important intrinsic invariants which are useful in the study of algebr
Publisher: American Mathematical Soc.
ISBN: 0821891324
Category : Mathematics
Languages : en
Pages : 634
Book Description
Informally, $K$-theory is a tool for probing the structure of a mathematical object such as a ring or a topological space in terms of suitably parameterized vector spaces and producing important intrinsic invariants which are useful in the study of algebr
The Local Structure of Algebraic K-Theory
Author: Bjørn Ian Dundas
Publisher: Springer Science & Business Media
ISBN: 1447143930
Category : Mathematics
Languages : en
Pages : 447
Book Description
Algebraic K-theory encodes important invariants for several mathematical disciplines, spanning from geometric topology and functional analysis to number theory and algebraic geometry. As is commonly encountered, this powerful mathematical object is very hard to calculate. Apart from Quillen's calculations of finite fields and Suslin's calculation of algebraically closed fields, few complete calculations were available before the discovery of homological invariants offered by motivic cohomology and topological cyclic homology. This book covers the connection between algebraic K-theory and Bökstedt, Hsiang and Madsen's topological cyclic homology and proves that the difference between the theories are ‘locally constant’. The usefulness of this theorem stems from being more accessible for calculations than K-theory, and hence a single calculation of K-theory can be used with homological calculations to obtain a host of ‘nearby’ calculations in K-theory. For instance, Quillen's calculation of the K-theory of finite fields gives rise to Hesselholt and Madsen's calculations for local fields, and Voevodsky's calculations for the integers give insight into the diffeomorphisms of manifolds. In addition to the proof of the full integral version of the local correspondence between K-theory and topological cyclic homology, the book provides an introduction to the necessary background in algebraic K-theory and highly structured homotopy theory; collecting all necessary tools into one common framework. It relies on simplicial techniques, and contains an appendix summarizing the methods widely used in the field. The book is intended for graduate students and scientists interested in algebraic K-theory, and presupposes a basic knowledge of algebraic topology.
Publisher: Springer Science & Business Media
ISBN: 1447143930
Category : Mathematics
Languages : en
Pages : 447
Book Description
Algebraic K-theory encodes important invariants for several mathematical disciplines, spanning from geometric topology and functional analysis to number theory and algebraic geometry. As is commonly encountered, this powerful mathematical object is very hard to calculate. Apart from Quillen's calculations of finite fields and Suslin's calculation of algebraically closed fields, few complete calculations were available before the discovery of homological invariants offered by motivic cohomology and topological cyclic homology. This book covers the connection between algebraic K-theory and Bökstedt, Hsiang and Madsen's topological cyclic homology and proves that the difference between the theories are ‘locally constant’. The usefulness of this theorem stems from being more accessible for calculations than K-theory, and hence a single calculation of K-theory can be used with homological calculations to obtain a host of ‘nearby’ calculations in K-theory. For instance, Quillen's calculation of the K-theory of finite fields gives rise to Hesselholt and Madsen's calculations for local fields, and Voevodsky's calculations for the integers give insight into the diffeomorphisms of manifolds. In addition to the proof of the full integral version of the local correspondence between K-theory and topological cyclic homology, the book provides an introduction to the necessary background in algebraic K-theory and highly structured homotopy theory; collecting all necessary tools into one common framework. It relies on simplicial techniques, and contains an appendix summarizing the methods widely used in the field. The book is intended for graduate students and scientists interested in algebraic K-theory, and presupposes a basic knowledge of algebraic topology.
Automorphisms of Manifolds and Algebraic K-theory
Representation Theory and Higher Algebraic K-Theory
Author: Aderemi Kuku
Publisher: CRC Press
ISBN: 142001112X
Category : Mathematics
Languages : en
Pages : 442
Book Description
Representation Theory and Higher Algebraic K-Theory is the first book to present higher algebraic K-theory of orders and group rings as well as characterize higher algebraic K-theory as Mackey functors that lead to equivariant higher algebraic K-theory and their relative generalizations. Thus, this book makes computations of higher K-theory of grou
Publisher: CRC Press
ISBN: 142001112X
Category : Mathematics
Languages : en
Pages : 442
Book Description
Representation Theory and Higher Algebraic K-Theory is the first book to present higher algebraic K-theory of orders and group rings as well as characterize higher algebraic K-theory as Mackey functors that lead to equivariant higher algebraic K-theory and their relative generalizations. Thus, this book makes computations of higher K-theory of grou
Handbook of K-Theory
Author: Eric Friedlander
Publisher: Springer Science & Business Media
ISBN: 354023019X
Category : Mathematics
Languages : en
Pages : 1148
Book Description
This handbook offers a compilation of techniques and results in K-theory. Each chapter is dedicated to a specific topic and is written by a leading expert. Many chapters present historical background; some present previously unpublished results, whereas some present the first expository account of a topic; many discuss future directions as well as open problems. It offers an exposition of our current state of knowledge as well as an implicit blueprint for future research.
Publisher: Springer Science & Business Media
ISBN: 354023019X
Category : Mathematics
Languages : en
Pages : 1148
Book Description
This handbook offers a compilation of techniques and results in K-theory. Each chapter is dedicated to a specific topic and is written by a leading expert. Many chapters present historical background; some present previously unpublished results, whereas some present the first expository account of a topic; many discuss future directions as well as open problems. It offers an exposition of our current state of knowledge as well as an implicit blueprint for future research.
Automorphisms of Manifolds and Algebraic K-theory
Author: Michael S. Weiss
Publisher:
ISBN: 9781470417208
Category : Algebra, Homological
Languages : en
Pages : 110
Book Description
"Volume 231, number 1084 (first of 5 numbers), September 2014."
Publisher:
ISBN: 9781470417208
Category : Algebra, Homological
Languages : en
Pages : 110
Book Description
"Volume 231, number 1084 (first of 5 numbers), September 2014."
Novikov Conjectures, Index Theorems, and Rigidity: Volume 2
Author: Steven C. Ferry
Publisher: Cambridge University Press
ISBN: 0521497957
Category : Mathematics
Languages : en
Pages : 378
Book Description
These volumes are the outgrowth of a conference held at the Mathematisches Forschungsinstitut Oberwolfach (Germany) on the subject of `Novikov conjectures, index theorems and rigidity'.
Publisher: Cambridge University Press
ISBN: 0521497957
Category : Mathematics
Languages : en
Pages : 378
Book Description
These volumes are the outgrowth of a conference held at the Mathematisches Forschungsinstitut Oberwolfach (Germany) on the subject of `Novikov conjectures, index theorems and rigidity'.
Introduction to Algebraic K-theory
Author: John Willard Milnor
Publisher: Princeton University Press
ISBN: 9780691081014
Category : Mathematics
Languages : en
Pages : 204
Book Description
Algebraic K-theory describes a branch of algebra that centers about two functors. K0 and K1, which assign to each associative ring ∧ an abelian group K0∧ or K1∧ respectively. Professor Milnor sets out, in the present work, to define and study an analogous functor K2, also from associative rings to abelian groups. Just as functors K0 and K1 are important to geometric topologists, K2 is now considered to have similar topological applications. The exposition includes, besides K-theory, a considerable amount of related arithmetic.
Publisher: Princeton University Press
ISBN: 9780691081014
Category : Mathematics
Languages : en
Pages : 204
Book Description
Algebraic K-theory describes a branch of algebra that centers about two functors. K0 and K1, which assign to each associative ring ∧ an abelian group K0∧ or K1∧ respectively. Professor Milnor sets out, in the present work, to define and study an analogous functor K2, also from associative rings to abelian groups. Just as functors K0 and K1 are important to geometric topologists, K2 is now considered to have similar topological applications. The exposition includes, besides K-theory, a considerable amount of related arithmetic.