Author: S.K. Jain
Publisher: Oxford University Press
ISBN: 019966451X
Category : Mathematics
Languages : en
Pages : 231
Book Description
This unique monograph brings together important material in the field of noncommutative rings and modules. It provides an up-to-date account of the topic of cyclic modules and the structure of rings which will be of particular interest to those working in abstract algebra and to graduate students who are exploring potential research topics.
Cyclic Modules and the Structure of Rings
Author: S.K. Jain
Publisher: Oxford University Press
ISBN: 019966451X
Category : Mathematics
Languages : en
Pages : 231
Book Description
This unique monograph brings together important material in the field of noncommutative rings and modules. It provides an up-to-date account of the topic of cyclic modules and the structure of rings which will be of particular interest to those working in abstract algebra and to graduate students who are exploring potential research topics.
Publisher: Oxford University Press
ISBN: 019966451X
Category : Mathematics
Languages : en
Pages : 231
Book Description
This unique monograph brings together important material in the field of noncommutative rings and modules. It provides an up-to-date account of the topic of cyclic modules and the structure of rings which will be of particular interest to those working in abstract algebra and to graduate students who are exploring potential research topics.
Modules and the Structure of Rings
Author: Golan
Publisher: CRC Press
ISBN: 9780824785550
Category : Mathematics
Languages : en
Pages : 298
Book Description
This book offers vital background information on methods for solving hard classification problems of algebraic structures. It explains how algebraists deal with the problem of the structure of modules over rings and how they make use of these structures to classify rings.
Publisher: CRC Press
ISBN: 9780824785550
Category : Mathematics
Languages : en
Pages : 298
Book Description
This book offers vital background information on methods for solving hard classification problems of algebraic structures. It explains how algebraists deal with the problem of the structure of modules over rings and how they make use of these structures to classify rings.
Structure of Rings
Author: Nathan Jacobson
Publisher: American Mathematical Soc.
ISBN: 0821810375
Category : Mathematics
Languages : en
Pages : 311
Book Description
The main purpose of this volume is to give an account of the important developments in the theory of (non-commutative) rings. These are: the structure theory of rings without finiteness assumptions, cohomology of algebras, and structure and representation theory of non-semi-simple rings (Frobenius algebras, quasi-Frobenius rings).
Publisher: American Mathematical Soc.
ISBN: 0821810375
Category : Mathematics
Languages : en
Pages : 311
Book Description
The main purpose of this volume is to give an account of the important developments in the theory of (non-commutative) rings. These are: the structure theory of rings without finiteness assumptions, cohomology of algebras, and structure and representation theory of non-semi-simple rings (Frobenius algebras, quasi-Frobenius rings).
Foundations of Module and Ring Theory
Author: Robert Wisbauer
Publisher: Routledge
ISBN: 1351447343
Category : Mathematics
Languages : en
Pages : 622
Book Description
This volume provides a comprehensive introduction to module theory and the related part of ring theory, including original results as well as the most recent work. It is a useful and stimulating study for those new to the subject as well as for researchers and serves as a reference volume. Starting form a basic understanding of linear algebra, the theory is presented and accompanied by complete proofs. For a module M, the smallest Grothendieck category containing it is denoted by o[M] and module theory is developed in this category. Developing the techniques in o[M] is no more complicated than in full module categories and the higher generality yields significant advantages: for example, module theory may be developed for rings without units and also for non-associative rings. Numerous exercises are included in this volume to give further insight into the topics covered and to draw attention to related results in the literature.
Publisher: Routledge
ISBN: 1351447343
Category : Mathematics
Languages : en
Pages : 622
Book Description
This volume provides a comprehensive introduction to module theory and the related part of ring theory, including original results as well as the most recent work. It is a useful and stimulating study for those new to the subject as well as for researchers and serves as a reference volume. Starting form a basic understanding of linear algebra, the theory is presented and accompanied by complete proofs. For a module M, the smallest Grothendieck category containing it is denoted by o[M] and module theory is developed in this category. Developing the techniques in o[M] is no more complicated than in full module categories and the higher generality yields significant advantages: for example, module theory may be developed for rings without units and also for non-associative rings. Numerous exercises are included in this volume to give further insight into the topics covered and to draw attention to related results in the literature.
Modules and Rings
Author: David Alexander Ross Wallace
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 394
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 394
Book Description
Categorical, Homological and Combinatorial Methods in Algebra
Author: Ashish K. Srivastava
Publisher: American Mathematical Soc.
ISBN: 1470443686
Category : Education
Languages : en
Pages : 357
Book Description
This book contains the proceedings of the AMS Special Session, in honor of S. K. Jain's 80th birthday, on Categorical, Homological and Combinatorial Methods in Algebra held from March 16–18, 2018, at Ohio State University, Columbus, Ohio. The articles contained in this volume aim to showcase the current state of art in categorical, homological and combinatorial aspects of algebra.
Publisher: American Mathematical Soc.
ISBN: 1470443686
Category : Education
Languages : en
Pages : 357
Book Description
This book contains the proceedings of the AMS Special Session, in honor of S. K. Jain's 80th birthday, on Categorical, Homological and Combinatorial Methods in Algebra held from March 16–18, 2018, at Ohio State University, Columbus, Ohio. The articles contained in this volume aim to showcase the current state of art in categorical, homological and combinatorial aspects of algebra.
Ring Theory and Its Applications
Author: Dinh Van Huynh
Publisher: American Mathematical Soc.
ISBN: 0821887971
Category : Mathematics
Languages : en
Pages : 330
Book Description
This volume contains the proceedings of the Ring Theory Session in honor of T. Y. Lam's 70th birthday, at the 31st Ohio State-Denison Mathematics Conference, held from May 25-27, 2012, at The Ohio State University, Columbus, Ohio. Included are expository articles and research papers covering topics such as cyclically presented modules, Eggert's conjecture, the Mittag-Leffler conditions, clean rings, McCoy rings, QF rings, projective and injective modules, Baer modules, and Leavitt path algebras. Graduate students and researchers in many areas of algebra will find this volume valuable as the papers point out many directions for future work; in particular, several articles contain explicit lists of open questions.
Publisher: American Mathematical Soc.
ISBN: 0821887971
Category : Mathematics
Languages : en
Pages : 330
Book Description
This volume contains the proceedings of the Ring Theory Session in honor of T. Y. Lam's 70th birthday, at the 31st Ohio State-Denison Mathematics Conference, held from May 25-27, 2012, at The Ohio State University, Columbus, Ohio. Included are expository articles and research papers covering topics such as cyclically presented modules, Eggert's conjecture, the Mittag-Leffler conditions, clean rings, McCoy rings, QF rings, projective and injective modules, Baer modules, and Leavitt path algebras. Graduate students and researchers in many areas of algebra will find this volume valuable as the papers point out many directions for future work; in particular, several articles contain explicit lists of open questions.
Advanced Linear Algebra
Author: Steven Roman
Publisher: Springer Science & Business Media
ISBN: 038727474X
Category : Mathematics
Languages : en
Pages : 488
Book Description
Covers a notably broad range of topics, including some topics not generally found in linear algebra books Contains a discussion of the basics of linear algebra
Publisher: Springer Science & Business Media
ISBN: 038727474X
Category : Mathematics
Languages : en
Pages : 488
Book Description
Covers a notably broad range of topics, including some topics not generally found in linear algebra books Contains a discussion of the basics of linear algebra
Extending Modules
Author: Nguyen Viet Dung
Publisher: Routledge
ISBN: 1351449095
Category : Mathematics
Languages : en
Pages : 248
Book Description
Module theory is an important tool for many different branches of mathematics, as well as being an interesting subject in its own right. Within module theory, the concept of injective modules is particularly important. Extending modules form a natural class of modules which is more general than the class of injective modules but retains many of its
Publisher: Routledge
ISBN: 1351449095
Category : Mathematics
Languages : en
Pages : 248
Book Description
Module theory is an important tool for many different branches of mathematics, as well as being an interesting subject in its own right. Within module theory, the concept of injective modules is particularly important. Extending modules form a natural class of modules which is more general than the class of injective modules but retains many of its
Serial Rings
Author: G. Puninski
Publisher: Springer Science & Business Media
ISBN: 9780792371878
Category : Mathematics
Languages : en
Pages : 240
Book Description
The main theme in classical ring theory is the structure theory of rings of a particular kind. For example, no one text book in ring theory could miss the Wedderburn-Artin theorem, which says that a ring R is semisimple Artinian iffR is isomorphic to a finite direct sum of full matrix rings over skew fields. This is an example of a finiteness condition which, at least historically, has dominated in ring theory. Ifwe would like to consider a requirement of a lattice-theoretical type, other than being Artinian or Noetherian, the most natural is uni-seriality. Here a module M is called uni-serial if its lattice of submodules is a chain, and a ring R is uni-serial if both RR and RR are uni-serial modules. The class of uni-serial rings includes commutative valuation rings and closed under homomorphic images. But it is not closed under direct sums nor with respect to Morita equivalence: a matrix ring over a uni-serial ring is not uni-serial. There is a class of rings which is very close to uni-serial but closed under the constructions just mentioned: serial rings. A ring R is called serial if RR and RR is a direct sum (necessarily finite) of uni-serial modules. Amongst others this class includes triangular matrix rings over a skew field. Also if F is a finite field of characteristic p and G is a finite group with a cyclic normal p-Sylow subgroup, then the group ring FG is serial.
Publisher: Springer Science & Business Media
ISBN: 9780792371878
Category : Mathematics
Languages : en
Pages : 240
Book Description
The main theme in classical ring theory is the structure theory of rings of a particular kind. For example, no one text book in ring theory could miss the Wedderburn-Artin theorem, which says that a ring R is semisimple Artinian iffR is isomorphic to a finite direct sum of full matrix rings over skew fields. This is an example of a finiteness condition which, at least historically, has dominated in ring theory. Ifwe would like to consider a requirement of a lattice-theoretical type, other than being Artinian or Noetherian, the most natural is uni-seriality. Here a module M is called uni-serial if its lattice of submodules is a chain, and a ring R is uni-serial if both RR and RR are uni-serial modules. The class of uni-serial rings includes commutative valuation rings and closed under homomorphic images. But it is not closed under direct sums nor with respect to Morita equivalence: a matrix ring over a uni-serial ring is not uni-serial. There is a class of rings which is very close to uni-serial but closed under the constructions just mentioned: serial rings. A ring R is called serial if RR and RR is a direct sum (necessarily finite) of uni-serial modules. Amongst others this class includes triangular matrix rings over a skew field. Also if F is a finite field of characteristic p and G is a finite group with a cyclic normal p-Sylow subgroup, then the group ring FG is serial.