Effective Computational Methods for Wave Propagation PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Effective Computational Methods for Wave Propagation PDF full book. Access full book title Effective Computational Methods for Wave Propagation by Nikolaos A. Kampanis. Download full books in PDF and EPUB format.

Effective Computational Methods for Wave Propagation

Effective Computational Methods for Wave Propagation PDF Author: Nikolaos A. Kampanis
Publisher: CRC Press
ISBN: 9781420010879
Category : Mathematics
Languages : en
Pages : 712

Book Description
Due to the increase in computational power and new discoveries in propagation phenomena for linear and nonlinear waves, the area of computational wave propagation has become more significant in recent years. Exploring the latest developments in the field, Effective Computational Methods for Wave Propagation presents several modern, valuable computational methods used to describe wave propagation phenomena in selected areas of physics and technology. Featuring contributions from internationally known experts, the book is divided into four parts. It begins with the simulation of nonlinear dispersive waves from nonlinear optics and the theory and numerical analysis of Boussinesq systems. The next section focuses on computational approaches, including a finite element method and parabolic equation techniques, for mathematical models of underwater sound propagation and scattering. The book then offers a comprehensive introduction to modern numerical methods for time-dependent elastic wave propagation. The final part supplies an overview of high-order, low diffusion numerical methods for complex, compressible flows of aerodynamics. Concentrating on physics and technology, this volume provides the necessary computational methods to effectively tackle the sources of problems that involve some type of wave motion.

Effective Computational Methods for Wave Propagation

Effective Computational Methods for Wave Propagation PDF Author: Nikolaos A. Kampanis
Publisher: CRC Press
ISBN: 9781420010879
Category : Mathematics
Languages : en
Pages : 712

Book Description
Due to the increase in computational power and new discoveries in propagation phenomena for linear and nonlinear waves, the area of computational wave propagation has become more significant in recent years. Exploring the latest developments in the field, Effective Computational Methods for Wave Propagation presents several modern, valuable computational methods used to describe wave propagation phenomena in selected areas of physics and technology. Featuring contributions from internationally known experts, the book is divided into four parts. It begins with the simulation of nonlinear dispersive waves from nonlinear optics and the theory and numerical analysis of Boussinesq systems. The next section focuses on computational approaches, including a finite element method and parabolic equation techniques, for mathematical models of underwater sound propagation and scattering. The book then offers a comprehensive introduction to modern numerical methods for time-dependent elastic wave propagation. The final part supplies an overview of high-order, low diffusion numerical methods for complex, compressible flows of aerodynamics. Concentrating on physics and technology, this volume provides the necessary computational methods to effectively tackle the sources of problems that involve some type of wave motion.

Computational Wave Propagation

Computational Wave Propagation PDF Author: Bjorn Engquist
Publisher: Springer Science & Business Media
ISBN: 9780387948744
Category : Mathematics
Languages : en
Pages : 236

Book Description
This IMA Volume in Mathematics and its Applications COMPUTATIONAL WAVE PROPAGATION is based on the workshop with the same title and was an integral part of the 1994-1995 IMA program on "Waves and Scattering." We would like to thank Bjorn Engquist and Gregory A. Kriegsmann for their hard work in organizing this meeting and in editing the proceedings. We also take this opportunity to thank the National Science Foundation, the Army Research Office, and the Office of Naval Research, whose financial support made this workshop possible. A vner Friedman Robert Gulliver v PREFACE Although the field of wave propagation and scattering has its classical roots in the last century, it has enjoyed a rich and vibrant life over the past 50 odd years. Scientists, engineers, and mathematicians have devel oped sophisticated asymptotic and numerical tools to solve problems of ever increasing complexity. Their work has been spurred on by emerging and maturing technologies, primarily concerned with the propagation and reception of information, and the efficient transmission of energy. The vitality of this scientific field is not waning. Increased demands to precisely quantify, measure, and control the propagation and scattering of waves in increasingly complex settings pose challenging scientific and mathematical problems. These push the envelope of analysis and comput ing, just as their forerunners did 50 years ago. These modern technological problems range from using underwater sound to monitor and predict global warming, to periodically embedding phase-sensitive amplifiers in optical fibers to insure long range digital communication.

Topics in Computational Wave Propagation

Topics in Computational Wave Propagation PDF Author: Mark Ainsworth
Publisher: Springer Science & Business Media
ISBN: 9783540007449
Category : Mathematics
Languages : en
Pages : 422

Book Description
These ten detailed and authoritative survey articles on numerical methods for direct and inverse wave propagation problems are written by leading experts. Researchers and practitioners in computational wave propagation, from postgraduate level onwards, will find the breadth and depth of coverage of recent developments a valuable resource. The articles describe a wide range of topics on the application and analysis of methods for time and frequency domain PDE and boundary integral formulations of wave propagation problems. Electromagnetic, seismic and acoustic equations are considered. Recent developments in methods and analysis ranging from finite differences to hp-adaptive finite elements, including high-accuracy and fast methods are described with extensive references.

Structural Health Monitoring For Advanced Composite Structures

Structural Health Monitoring For Advanced Composite Structures PDF Author: Aliabadi M H Ferri
Publisher: World Scientific
ISBN: 1786343940
Category : Technology & Engineering
Languages : en
Pages : 288

Book Description
Structural health monitoring (SHM) is a relatively new and alternative way of non-destructive inspection (NDI). It is the process of implementing a damage detection and characterization strategy for composite structures. The basis of SHM is the application of permanent fixed sensors on a structure, combined with minimum manual intervention to monitor its structural integrity. These sensors detect changes to the material and/or geometric properties of a structural system, including changes to the boundary conditions and system connectivity, which adversely affect the system's performance. This book's primary focus is on the diagnostics element of SHM, namely damage detection in composite structures. The techniques covered include the use of Piezoelectric transducers for active and passive Ultrasonics guided waves and electromechanical impedance measurements, and fiber optic sensors for strain sensing. It also includes numerical modeling of wave propagation in composite structures. Contributed chapters written by leading researchers in the field describe each of these techniques, making it a key text for researchers and NDI practitioners as well as postgraduate students in a number of specialties including materials, aerospace, mechanical and computational engineering. Contents: Damage Detection and Characterization with Piezoelectric Transducers — Active Sensing (Z Sharif Khodaei and M H Aliabadi)Modeling Guided Wave Propagation in Composite Structures Using Local Interaction Simulation Approach (Yanfeng Shen and Carlos E S Cesnik)Design and Development of a Phased Array System for Damage Detection in Structures (Bruno Rocha, Mehmet Yildiz & Afzal Suleman)Degradation Detection in Composite Structures with PZT Transducers (Wiesław M Ostachowicz, Paweł H Malinowski & Tomasz Wandowski)Numerical Modelling of Wave Propagation in Composite Structures (Sourav Banerjee)SHM of Composite Structures by Fibre Optic Sensors (Alfredo Guemes)Impact Detection and Identification with Piezoceramic Sensors — Passive Sensing (Z Sharif Khodaei and M H Aliabadi) Readership: Researchers and NDI practitioners as well as postgraduate students in a number of specialties including materials, aerospace, mechanical and computational engineering. Keywords: Structural Health Modelling;Non-Destrctive Inspection;Dignostic SHM;Aerospace Engineering;Microelectromechanical Systems;Acoustic Emission Monitoring;AccelerometersReview:0

Dispersive Shallow Water Waves

Dispersive Shallow Water Waves PDF Author: Gayaz Khakimzyanov
Publisher: Springer Nature
ISBN: 3030462676
Category : Mathematics
Languages : en
Pages : 296

Book Description
This monograph presents cutting-edge research on dispersive wave modelling, and the numerical methods used to simulate the propagation and generation of long surface water waves. Including both an overview of existing dispersive models, as well as recent breakthroughs, the authors maintain an ideal balance between theory and applications. From modelling tsunami waves to smaller scale coastal processes, this book will be an indispensable resource for those looking to be brought up-to-date in this active area of scientific research. Beginning with an introduction to various dispersive long wave models on the flat space, the authors establish a foundation on which readers can confidently approach more advanced mathematical models and numerical techniques. The first two chapters of the book cover modelling and numerical simulation over globally flat spaces, including adaptive moving grid methods along with the operator splitting approach, which was historically proposed at the Institute of Computational Technologies at Novosibirsk. Later chapters build on this to explore high-end mathematical modelling of the fluid flow over deformed and rotating spheres using the operator splitting approach. The appendices that follow further elaborate by providing valuable insight into long wave models based on the potential flow assumption, and modified intermediate weakly nonlinear weakly dispersive equations. Dispersive Shallow Water Waves will be a valuable resource for researchers studying theoretical or applied oceanography, nonlinear waves as well as those more broadly interested in free surface flow dynamics.

IUTAM Symposium on Recent Advances of Acoustic Waves in Solids

IUTAM Symposium on Recent Advances of Acoustic Waves in Solids PDF Author: Tsung-Tsong Wu
Publisher: Springer Science & Business Media
ISBN: 9048198933
Category : Science
Languages : en
Pages : 446

Book Description
Rapid growth of the mobile communication market has triggered extensive research on the bulk as well as surface acoustic wave devices in the last decade. Quite a few important results on the modeling and simulation of Film Bulk Acoustic Resonator (FBAR) and Layered SAW devices were reported recently. The other recent advance of acoustic waves in solids is the so-called phononic crystals or phononic band-gap materials. Analogous to the band-gap of light in photonic crystals, acoustic waves in periodic elastic structures also exhibit band-gap. Important applications of phononic band gap materials can potentially be found with creating a vibration free environment in microstructures, and design of advanced acoustic frequency filter, etc. In addition to the wave electronics and phononic crystals, to facilitate the emerging needs in the quantitative nondestructive evaluation of materials, waves in anisotropic solids and/or electro-, magneto- interaction problems also regained much attention recently. Topics treated include: Waves in piezoelectric crystals; Simulation of advanced BAW and SAW devices; Analysis of band gaps in phononic structures; Experimental investigation of phononic structures; Waves in multilayered media;Waves in anisotropic solids and/or electro-, magneto- interaction problems.

Mathematical and Computational Methods in Photonics and Phononics

Mathematical and Computational Methods in Photonics and Phononics PDF Author: Habib Ammari
Publisher: American Mathematical Soc.
ISBN: 1470448009
Category : Photonics
Languages : en
Pages : 509

Book Description
The fields of photonics and phononics encompass the fundamental science of light and sound propagation and interactions in complex structures, as well as its technological applications. This book reviews new and fundamental mathematical tools, computational approaches, and inversion and optimal design methods to address challenging problems in photonics and phononics. An emphasis is placed on analyzing sub-wavelength resonators, super-focusing and super-resolution of electromagnetic and acoustic waves, photonic and phononic crystals, electromagnetic cloaking, and electromagnetic and elastic metamaterials and metasurfaces. Throughout this book, the authors demonstrate the power of layer potential techniques for solving challenging problems in photonics and phononics when they are combined with asymptotic analysis. This book might be of interest to researchers and graduate students working in the fields of applied and computational mathematics, partial differential equations, electromagnetic theory, elasticity, integral equations, and inverse and optimal design problems in photonics and phononics.

Remote Sensing of Turbulence

Remote Sensing of Turbulence PDF Author: Victor Raizer
Publisher: CRC Press
ISBN: 1000458806
Category : Technology & Engineering
Languages : en
Pages : 293

Book Description
This book offers a unique multidisciplinary integration of the physics of turbulence and remote sensing technology. Remote Sensing of Turbulence provides a new vision on the research of turbulence and summarizes the current and future challenges of monitoring turbulence remotely. The book emphasizes sophisticated geophysical applications, detection, and recognition of complex turbulent flows in oceans and the atmosphere. Through several techniques based on microwave and optical/IR observations, the text explores the technological capabilities and tools for the detection of turbulence, their signatures, and variability. FEATURES Covers the fundamental aspects of turbulence problems with a broad geophysical scope for a wide audience of readers Provides a complete description of remote-sensing capabilities for observing turbulence in the earth’s environment Establishes the state-of-the-art remote-sensing techniques and methods of data analysis for turbulence detection Investigates and evaluates turbulence detection signatures, their properties, and variability Provides cutting-edge remote-sensing applications for space-based monitoring and forecasts of turbulence in oceans and the atmosphere This book is a great resource for applied physicists, the professional remote sensing community, ecologists, geophysicists, and earth scientists.

Genetic Algorithms and Genetic Programming

Genetic Algorithms and Genetic Programming PDF Author: Michael Affenzeller
Publisher: CRC Press
ISBN: 1420011324
Category : Computers
Languages : en
Pages : 395

Book Description
Genetic Algorithms and Genetic Programming: Modern Concepts and Practical Applications discusses algorithmic developments in the context of genetic algorithms (GAs) and genetic programming (GP). It applies the algorithms to significant combinatorial optimization problems and describes structure identification using HeuristicLab as a platform for al

Wave Propagation in Complex Media

Wave Propagation in Complex Media PDF Author: George Papanicolaou
Publisher: Springer Science & Business Media
ISBN: 1461216788
Category : Mathematics
Languages : en
Pages : 301

Book Description
This IMA Volume in Mathematics and its Applications WAVE PROPAGATION IN COMPLEX MEDIA is based on the proceedings of two workshops: • Wavelets, multigrid and other fast algorithms (multipole, FFT) and their use in wave propagation and • Waves in random and other complex media. Both workshops were integral parts of the 1994-1995 IMA program on "Waves and Scattering." We would like to thank Gregory Beylkin, Robert Burridge, Ingrid Daubechies, Leonid Pastur, and George Papanicolaou for their excellent work as organizers of these meetings. We also take this opportunity to thank the National Science Foun dation (NSF), the Army Research Office (ARO, and the Office of Naval Research (ONR), whose financial support made these workshops possible. A vner Friedman Robert Gulliver v PREFACE During the last few years the numerical techniques for the solution of elliptic problems, in potential theory for example, have been drastically improved. Several so-called fast methods have been developed which re duce the required computing time many orders of magnitude over that of classical algorithms. The new methods include multigrid, fast Fourier transforms, multi pole methods and wavelet techniques. Wavelets have re cently been developed into a very useful tool in signal processing, the solu tion of integral equation, etc. Wavelet techniques should be quite useful in many wave propagation problems, especially in inhomogeneous and nonlin ear media where special features of the solution such as singularities might be tracked efficiently.