Mathematics of Uncertainty Modeling in the Analysis of Engineering and Science Problems PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Mathematics of Uncertainty Modeling in the Analysis of Engineering and Science Problems PDF full book. Access full book title Mathematics of Uncertainty Modeling in the Analysis of Engineering and Science Problems by Chakraverty, S.. Download full books in PDF and EPUB format.

Mathematics of Uncertainty Modeling in the Analysis of Engineering and Science Problems

Mathematics of Uncertainty Modeling in the Analysis of Engineering and Science Problems PDF Author: Chakraverty, S.
Publisher: IGI Global
ISBN: 1466649925
Category : Mathematics
Languages : en
Pages : 441

Book Description
"This book provides the reader with basic concepts for soft computing and other methods for various means of uncertainty in handling solutions, analysis, and applications"--Provided by publisher.

Mathematics of Uncertainty Modeling in the Analysis of Engineering and Science Problems

Mathematics of Uncertainty Modeling in the Analysis of Engineering and Science Problems PDF Author: Chakraverty, S.
Publisher: IGI Global
ISBN: 1466649925
Category : Mathematics
Languages : en
Pages : 441

Book Description
"This book provides the reader with basic concepts for soft computing and other methods for various means of uncertainty in handling solutions, analysis, and applications"--Provided by publisher.

Mathematics of Uncertainty Modeling in the Analysis of Engineering and Science Problems

Mathematics of Uncertainty Modeling in the Analysis of Engineering and Science Problems PDF Author: Snehashish Chakraverty
Publisher:
ISBN: 9781466649941
Category : Civil engineering
Languages : en
Pages : 0

Book Description
"This book provides the reader with basic concepts for soft computing and other methods for various means of uncertainty in handling solutions, analysis, and applications"--

Uncertainty Modeling and Analysis in Engineering and the Sciences

Uncertainty Modeling and Analysis in Engineering and the Sciences PDF Author: Bilal M. Ayyub
Publisher: Chapman and Hall/CRC
ISBN: 9781584886440
Category : Business & Economics
Languages : en
Pages : 400

Book Description
Engineers and scientists often need to solve complex problems with incomplete information resources, necessitating a proper treatment of uncertainty and a reliance on expert opinions. Uncertainty Modeling and Analysis in Engineering and the Sciences prepares current and future analysts and practitioners to understand the fundamentals of knowledge and ignorance, how to model and analyze uncertainty, and how to select appropriate analytical tools for particular problems. This volume covers primary components of ignorance and their impact on practice and decision making. It provides an overview of the current state of uncertainty modeling and analysis, and reviews emerging theories while emphasizing practical applications in science and engineering. The book introduces fundamental concepts of classical, fuzzy, and rough sets, probability, Bayesian methods, interval analysis, fuzzy arithmetic, interval probabilities, evidence theory, open-world models, sequences, and possibility theory. The authors present these methods to meet the needs of practitioners in many fields, emphasizing the practical use, limitations, advantages, and disadvantages of the methods.

Formalized Probability Theory and Applications Using Theorem Proving

Formalized Probability Theory and Applications Using Theorem Proving PDF Author: Hasan, Osman
Publisher: IGI Global
ISBN: 1466683163
Category : Mathematics
Languages : en
Pages : 298

Book Description
Scientists and engineers often have to deal with systems that exhibit random or unpredictable elements and must effectively evaluate probabilities in each situation. Computer simulations, while the traditional tool used to solve such problems, are limited in the scale and complexity of the problems they can solve. Formalized Probability Theory and Applications Using Theorem Proving discusses some of the limitations inherent in computer systems when applied to problems of probabilistic analysis, and presents a novel solution to these limitations, combining higher-order logic with computer-based theorem proving. Combining practical application with theoretical discussion, this book is an important reference tool for mathematicians, scientists, engineers, and researchers in all STEM fields.

Uncertainty Modeling for Engineering Applications

Uncertainty Modeling for Engineering Applications PDF Author: Flavio Canavero
Publisher: Springer
ISBN: 3030048705
Category : Technology & Engineering
Languages : en
Pages : 184

Book Description
This book provides an overview of state-of-the-art uncertainty quantification (UQ) methodologies and applications, and covers a wide range of current research, future challenges and applications in various domains, such as aerospace and mechanical applications, structure health and seismic hazard, electromagnetic energy (its impact on systems and humans) and global environmental state change. Written by leading international experts from different fields, the book demonstrates the unifying property of UQ theme that can be profitably adopted to solve problems of different domains. The collection in one place of different methodologies for different applications has the great value of stimulating the cross-fertilization and alleviate the language barrier among areas sharing a common background of mathematical modeling for problem solution. The book is designed for researchers, professionals and graduate students interested in quantitatively assessing the effects of uncertainties in their fields of application. The contents build upon the workshop “Uncertainty Modeling for Engineering Applications” (UMEMA 2017), held in Torino, Italy in November 2017.

Fuzzy Differential Equations and Applications for Engineers and Scientists

Fuzzy Differential Equations and Applications for Engineers and Scientists PDF Author: S. Chakraverty
Publisher: CRC Press
ISBN: 1315355531
Category : Mathematics
Languages : en
Pages : 142

Book Description
Differential equations play a vital role in the modeling of physical and engineering problems, such as those in solid and fluid mechanics, viscoelasticity, biology, physics, and many other areas. In general, the parameters, variables and initial conditions within a model are considered as being defined exactly. In reality there may be only vague, imprecise or incomplete information about the variables and parameters available. This can result from errors in measurement, observation, or experimental data; application of different operating conditions; or maintenance induced errors. To overcome uncertainties or lack of precision, one can use a fuzzy environment in parameters, variables and initial conditions in place of exact (fixed) ones, by turning general differential equations into Fuzzy Differential Equations ("FDEs"). In real applications it can be complicated to obtain exact solution of fuzzy differential equations due to complexities in fuzzy arithmetic, creating the need for use of reliable and efficient numerical techniques in the solution of fuzzy differential equations. These include fuzzy ordinary and partial, fuzzy linear and nonlinear, and fuzzy arbitrary order differential equations. This unique work?provides a new direction for the reader in the use of basic concepts of fuzzy differential equations, solutions and its applications. It can serve as an essential reference work for students, scholars, practitioners, researchers and academicians in engineering and science who need to model uncertain physical problems.

Mathematical Methods in Interdisciplinary Sciences

Mathematical Methods in Interdisciplinary Sciences PDF Author: Snehashish Chakraverty
Publisher: John Wiley & Sons
ISBN: 1119585651
Category : Mathematics
Languages : en
Pages : 464

Book Description
Brings mathematics to bear on your real-world, scientific problems Mathematical Methods in Interdisciplinary Sciences provides a practical and usable framework for bringing a mathematical approach to modelling real-life scientific and technological problems. The collection of chapters Dr. Snehashish Chakraverty has provided describe in detail how to bring mathematics, statistics, and computational methods to the fore to solve even the most stubborn problems involving the intersection of multiple fields of study. Graduate students, postgraduate students, researchers, and professors will all benefit significantly from the author's clear approach to applied mathematics. The book covers a wide range of interdisciplinary topics in which mathematics can be brought to bear on challenging problems requiring creative solutions. Subjects include: Structural static and vibration problems Heat conduction and diffusion problems Fluid dynamics problems The book also covers topics as diverse as soft computing and machine intelligence. It concludes with examinations of various fields of application, like infectious diseases, autonomous car and monotone inclusion problems.

Advanced Numerical and Semi-Analytical Methods for Differential Equations

Advanced Numerical and Semi-Analytical Methods for Differential Equations PDF Author: Snehashish Chakraverty
Publisher: John Wiley & Sons
ISBN: 1119423422
Category : Mathematics
Languages : en
Pages : 256

Book Description
Examines numerical and semi-analytical methods for differential equations that can be used for solving practical ODEs and PDEs This student-friendly book deals with various approaches for solving differential equations numerically or semi-analytically depending on the type of equations and offers simple example problems to help readers along. Featuring both traditional and recent methods, Advanced Numerical and Semi Analytical Methods for Differential Equations begins with a review of basic numerical methods. It then looks at Laplace, Fourier, and weighted residual methods for solving differential equations. A new challenging method of Boundary Characteristics Orthogonal Polynomials (BCOPs) is introduced next. The book then discusses Finite Difference Method (FDM), Finite Element Method (FEM), Finite Volume Method (FVM), and Boundary Element Method (BEM). Following that, analytical/semi analytic methods like Akbari Ganji's Method (AGM) and Exp-function are used to solve nonlinear differential equations. Nonlinear differential equations using semi-analytical methods are also addressed, namely Adomian Decomposition Method (ADM), Homotopy Perturbation Method (HPM), Variational Iteration Method (VIM), and Homotopy Analysis Method (HAM). Other topics covered include: emerging areas of research related to the solution of differential equations based on differential quadrature and wavelet approach; combined and hybrid methods for solving differential equations; as well as an overview of fractal differential equations. Further, uncertainty in term of intervals and fuzzy numbers have also been included, along with the interval finite element method. This book: Discusses various methods for solving linear and nonlinear ODEs and PDEs Covers basic numerical techniques for solving differential equations along with various discretization methods Investigates nonlinear differential equations using semi-analytical methods Examines differential equations in an uncertain environment Includes a new scenario in which uncertainty (in term of intervals and fuzzy numbers) has been included in differential equations Contains solved example problems, as well as some unsolved problems for self-validation of the topics covered Advanced Numerical and Semi Analytical Methods for Differential Equations is an excellent text for graduate as well as post graduate students and researchers studying various methods for solving differential equations, numerically and semi-analytically.

Uncertainty Quantification and Predictive Computational Science

Uncertainty Quantification and Predictive Computational Science PDF Author: Ryan G. McClarren
Publisher: Springer
ISBN: 3319995251
Category : Science
Languages : en
Pages : 345

Book Description
This textbook teaches the essential background and skills for understanding and quantifying uncertainties in a computational simulation, and for predicting the behavior of a system under those uncertainties. It addresses a critical knowledge gap in the widespread adoption of simulation in high-consequence decision-making throughout the engineering and physical sciences. Constructing sophisticated techniques for prediction from basic building blocks, the book first reviews the fundamentals that underpin later topics of the book including probability, sampling, and Bayesian statistics. Part II focuses on applying Local Sensitivity Analysis to apportion uncertainty in the model outputs to sources of uncertainty in its inputs. Part III demonstrates techniques for quantifying the impact of parametric uncertainties on a problem, specifically how input uncertainties affect outputs. The final section covers techniques for applying uncertainty quantification to make predictions under uncertainty, including treatment of epistemic uncertainties. It presents the theory and practice of predicting the behavior of a system based on the aggregation of data from simulation, theory, and experiment. The text focuses on simulations based on the solution of systems of partial differential equations and includes in-depth coverage of Monte Carlo methods, basic design of computer experiments, as well as regularized statistical techniques. Code references, in python, appear throughout the text and online as executable code, enabling readers to perform the analysis under discussion. Worked examples from realistic, model problems help readers understand the mechanics of applying the methods. Each chapter ends with several assignable problems. Uncertainty Quantification and Predictive Computational Science fills the growing need for a classroom text for senior undergraduate and early-career graduate students in the engineering and physical sciences and supports independent study by researchers and professionals who must include uncertainty quantification and predictive science in the simulations they develop and/or perform.

Whys and Hows in Uncertainty Modelling

Whys and Hows in Uncertainty Modelling PDF Author: Isaac Elishakoff
Publisher: Springer Science & Business Media
ISBN: 9783211831557
Category : Mathematics
Languages : en
Pages : 412

Book Description
This book presents, as a single package, three semingly contradictory and often competitive approaches to deal with ever present uncertainty in science and engineering. The book describes, as a unique view, probabilistic, fuzzy sets based and antioptimization based approaches, in order to remedy the present "tower ob Babel” situation, in which researchers in competing fields do not communicate. Integrative approach will attract scientists and engineers alike and provide a strong impetus towards integrative, hybrid approaches.