Multiscale Modelling of Plasticity and Fracture by Means of Dislocation Mechanics PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Multiscale Modelling of Plasticity and Fracture by Means of Dislocation Mechanics PDF full book. Access full book title Multiscale Modelling of Plasticity and Fracture by Means of Dislocation Mechanics by Peter Gumbsch. Download full books in PDF and EPUB format.

Multiscale Modelling of Plasticity and Fracture by Means of Dislocation Mechanics

Multiscale Modelling of Plasticity and Fracture by Means of Dislocation Mechanics PDF Author: Peter Gumbsch
Publisher: Springer Science & Business Media
ISBN: 3709102839
Category : Technology & Engineering
Languages : en
Pages : 394

Book Description
The latest state of simulation techniques to model plasticity and fracture in crystalline materials on the nano- and microscale is presented. Discrete dislocation mechanics and the neighbouring fields molecular dynamics and crystal plasticity are central parts. The physical phenomena, the theoretical basics, their mathematical description and the simulation techniques are introduced and important problems from the formation of dislocation structures to fatigue and fracture from the nano- to microscale as well as it’s impact on the macro behaviour are considered.

Multiscale Modelling of Plasticity and Fracture by Means of Dislocation Mechanics

Multiscale Modelling of Plasticity and Fracture by Means of Dislocation Mechanics PDF Author: Peter Gumbsch
Publisher: Springer Science & Business Media
ISBN: 3709102839
Category : Technology & Engineering
Languages : en
Pages : 394

Book Description
The latest state of simulation techniques to model plasticity and fracture in crystalline materials on the nano- and microscale is presented. Discrete dislocation mechanics and the neighbouring fields molecular dynamics and crystal plasticity are central parts. The physical phenomena, the theoretical basics, their mathematical description and the simulation techniques are introduced and important problems from the formation of dislocation structures to fatigue and fracture from the nano- to microscale as well as it’s impact on the macro behaviour are considered.

Mesoscale Models

Mesoscale Models PDF Author: Sinisa Mesarovic
Publisher: Springer
ISBN: 3319941860
Category : Science
Languages : en
Pages : 344

Book Description
The book helps to answer the following questions: How far have the understanding and mesoscale modeling advanced in recent decades, what are the key open questions that require further research and what are the mathematical and physical requirements for a mesoscale model intended to provide either insight or a predictive engineering tool? It is addressed to young researchers including doctoral students, postdocs and early career faculty,

Multi-Scale Continuum Mechanics Modelling of Fibre-Reinforced Polymer Composites

Multi-Scale Continuum Mechanics Modelling of Fibre-Reinforced Polymer Composites PDF Author: Wim Van Paepegem
Publisher: Woodhead Publishing
ISBN: 0128189851
Category : Technology & Engineering
Languages : en
Pages : 766

Book Description
Multi-scale modelling of composites is a very relevant topic in composites science. This is illustrated by the numerous sessions in the recent European and International Conferences on Composite Materials, but also by the fast developments in multi-scale modelling software tools, developed by large industrial players such as Siemens (Virtual Material Characterization toolkit and MultiMechanics virtual testing software), MSC/e-Xstream (Digimat software), Simulia (micromechanics plug-in in Abaqus), HyperSizer (Multi-scale design of composites), Altair (Altair Multiscale Designer) This book is intended to be an ideal reference on the latest advances in multi-scale modelling of fibre-reinforced polymer composites, that is accessible for both (young) researchers and end users of modelling software. We target three main groups: This book aims at a complete introduction and overview of the state-of-the-art in multi-scale modelling of composites in three axes: • ranging from prediction of homogenized elastic properties to nonlinear material behaviour • ranging from geometrical models for random packing of unidirectional fibres over meso-scale geometries for textile composites to orientation tensors for short fibre composites • ranging from damage modelling of unidirectionally reinforced composites over textile composites to short fibre-reinforced composites The book covers the three most important scales in multi-scale modelling of composites: (i) micro-scale, (ii) meso-scale and (iii) macro-scale. The nano-scale and related atomistic and molecular modelling approaches are deliberately excluded, since the book wants to focus on continuum mechanics and there are already a lot of dedicated books about polymer nanocomposites. A strong focus is put on physics-based damage modelling, in the sense that the chapters devote attention to modelling the different damage mechanisms (matrix cracking, fibre/matrix debonding, delamination, fibre fracture,...) in such a way that the underlying physics of the initiation and growth of these damage modes is respected. The book also gives room to not only discuss the finite element based approaches for multi-scale modelling, but also much faster methods that are popular in industrial software, such as Mean Field Homogenization methods (based on Mori-Tanaka and Eshelby solutions) and variational methods (shear lag theory and more advanced theories). Since the book targets a wide audience, the focus is put on the most common numerical approaches that are used in multi-scale modelling. Very specialized numerical methods like peridynamics modelling, Material Point Method, eXtended Finite Element Method (XFEM), isogeometric analysis, SPH (Smoothed Particle Hydrodynamics),... are excluded. Outline of the book The book is divided in three large parts, well balanced with each a similar number of chapters:

Generalized Continua and Dislocation Theory

Generalized Continua and Dislocation Theory PDF Author: Carlo Sansour
Publisher: Springer Science & Business Media
ISBN: 3709112222
Category : Science
Languages : en
Pages : 323

Book Description
Defects, dislocations and the general theory.- Approaches to generalized continua.- Generalized continuum modelling of crystal plasticity.- Introduction to discrete dislocation dynamics. The book contains four lectures on generalized continua and dislocation theory, reflecting the treatment of the subject at different scales. G. Maugin provides a continuum formulation of defects at the heart of which lies the notion of the material configuration and the material driving forces of in-homogeneities such as dislocations, disclinations, point defects, cracks, phase-transition fronts and shock waves. C. Sansour and S. Skatulla start with a compact treatment of linear transformation groups with subsequent excursion into the continuum theory of generalized continua. After a critical assessment a unified framework of the same is presented. The next contribution by S. Forest gives an account on generalized crystal plasticity. Finally, H. Zbib provides an account of dislocation dynamics and illustrates its fundamental importance at the smallest scale. In three contributions extensive computational results of many examples are presented.

Computational Multiscale Modeling of Multiphase Nanosystems

Computational Multiscale Modeling of Multiphase Nanosystems PDF Author: Alexander V. Vakhrushev
Publisher: CRC Press
ISBN: 1771885297
Category : Science
Languages : en
Pages : 372

Book Description
Computational Multiscale Modeling of Multiphase Nanosystems: Theory and Applications presents a systematic description of the theory of multiscale modeling of nanotechnology applications in various fields of science and technology. The problems of computing nanoscale systems at different structural scales are defined, and algorithms are given for their numerical solutions by the quantum/continuum mechanics, molecular dynamics, and mesodynamics methods. Emphasis is given to the processes of the formation, movement, and interaction of nanoparticles; the formation of nanocomposites; and the processes accompanying the application of nanocomposites. The book concentrates on different types of nanosystems: solid, liquid, gaseous, and multi-phase, consisting of various elements interacting with each other, and with other elements of the nanosystem and with the environment. The book includes a large number of examples of numerical modeling of nanosystems. The valuable information presented here will be useful to engineers, researchers, and postgraduate students engaged in the design and research in the field of nanotechnology.

Virtual Design and Validation

Virtual Design and Validation PDF Author: Peter Wriggers
Publisher: Springer Nature
ISBN: 3030381560
Category : Science
Languages : en
Pages : 349

Book Description
This book provides an overview of the experimental characterization of materials and their numerical modeling, as well as the development of new computational methods for virtual design. Its 17 contributions are divided into four main sections: experiments and virtual design, composites, fractures and fatigue, and uncertainty quantification. The first section explores new experimental methods that can be used to more accurately characterize material behavior. Furthermore, it presents a combined experimental and numerical approach to optimizing the properties of a structure, as well as new developments in the field of computational methods for virtual design. In turn, the second section is dedicated to experimental and numerical investigations of composites, with a special focus on the modeling of failure modes and the optimization of these materials. Since fatigue also includes wear due to frictional contact and aging of elastomers, new numerical schemes in the field of crack modeling and fatigue prediction are also discussed. The input parameters of a classical numerical simulation represent mean values of actual observations, though certain deviations arise: to illustrate the uncertainties of parameters used in calculations, the book’s final section presents new and efficient approaches to uncertainty quantification.

Advanced Problem in Mechanics III

Advanced Problem in Mechanics III PDF Author: D. A. Indeitsev
Publisher: Springer Nature
ISBN: 3031372468
Category : Technology & Engineering
Languages : en
Pages : 443

Book Description
This book focuses on original theories and approaches in the field of mechanics. It reports on both theoretical and applied researches, with a special emphasis on problems and solutions at the interfaces of mechanics and other research areas. The respective chapters highlight cutting-edge works fostering development in fields such as micro- and nanomechanics, material science, physics of solid states, molecular physics, astrophysics, and many others. Special attention has been given to outstanding research conducted by young scientists from all over the world. This book is based on the 49th edition of the international conference “Advanced Problems in Mechanics”, which was held on June 21-25, 2021, in St. Petersburg, Russia, and co-organized by The Peter the Great St. Petersburg Polytechnic University and the Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences, under the patronage of the Russian Academy of Sciences. It provides researchers and graduate students with an extensive overview of the latest research and a source of inspiration for future developments and collaborations in mechanics and related fields.

Handbook of Software Solutions for ICME

Handbook of Software Solutions for ICME PDF Author: Georg J. Schmitz
Publisher: John Wiley & Sons
ISBN: 3527693599
Category : Technology & Engineering
Languages : en
Pages : 632

Book Description
As one of the results of an ambitious project, this handbook provides a well-structured directory of globally available software tools in the area of Integrated Computational Materials Engineering (ICME). The compilation covers models, software tools, and numerical methods allowing describing electronic, atomistic, and mesoscopic phenomena, which in their combination determine the microstructure and the properties of materials. It reaches out to simulations of component manufacture comprising primary shaping, forming, joining, coating, heat treatment, and machining processes. Models and tools addressing the in-service behavior like fatigue, corrosion, and eventually recycling complete the compilation. An introductory overview is provided for each of these different modelling areas highlighting the relevant phenomena and also discussing the current state for the different simulation approaches. A must-have for researchers, application engineers, and simulation software providers seeking a holistic overview about the current state of the art in a huge variety of modelling topics. This handbook equally serves as a reference manual for academic and commercial software developers and providers, for industrial users of simulation software, and for decision makers seeking to optimize their production by simulations. In view of its sound introductions into the different fields of materials physics, materials chemistry, materials engineering and materials processing it also serves as a tutorial for students in the emerging discipline of ICME, which requires a broad view on things and at least a basic education in adjacent fields.

Fluid Dynamics in Complex Fractured-Porous Systems

Fluid Dynamics in Complex Fractured-Porous Systems PDF Author: Boris Faybishenko
Publisher: John Wiley & Sons
ISBN: 1118877284
Category : Science
Languages : en
Pages : 264

Book Description
Despite of many years of studies, predicting fluid flow, heat, and chemical transport in fractured-porous media remains a challenge for scientists and engineers worldwide. This monograph is the third in a series on the dynamics of fluids and transport in fractured rock published by the American Geophysical Union (Geophysical Monograph Series, Vol. 162, 2005; and Geophysical Monograph, No. 122, 2000). This monograph is dedicated to the late Dr. Paul Witherspoon for his seminal influence on the development of ideas and methodologies and the birth of contemporary fractured rock hydrogeology, including such fundamental and applied problems as environmental remediation; exploitation of oil, gas, and geothermal resources; disposal of spent nuclear fuel; and geotechnical engineering. This monograph addresses fundamental and applied scientific questions and is intended to assist scientists and practitioners bridge gaps in the current scientific knowledge in the areas of theoretical fluids dynamics, field measurements, and experiments for different practical applications. Readers of this book will include researchers, engineers, and professionals within academia, Federal agencies, and industry, as well as graduate/undergraduate students involved in theoretical, experimental, and numerical modeling studies of fluid dynamics and reactive chemical transport in the unsaturated and saturated zones, including studies pertaining to petroleum and geothermal reservoirs, environmental management and remediation, mining, gas storage, and radioactive waste isolation in underground repositories. Volume highlights include discussions of the following: Fundamentals of using a complex systems approach to describe flow and transport in fractured-porous media. Methods of Field Measurements and Experiments Collective behavior and emergent properties of complex fractured rock systems Connection to the surrounding environment Multi-disciplinary research for different applications

Magneto-Active Polymers

Magneto-Active Polymers PDF Author: Jean-Paul Pelteret
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110418576
Category : Science
Languages : en
Pages : 403

Book Description
From fabrication to testing and modeling this monograph covers all aspects on the materials class of magneto active polymers. The focus is on computational modeling of manufacturing processes and material parameters. As other smart materials, these elastomers have the ability to change electrical and mechanical properties upon application of magnetic fields. This allows for novel applications ranging from biomedical engineering to mechatronics.