OFDM for Optical Communications PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download OFDM for Optical Communications PDF full book. Access full book title OFDM for Optical Communications by William Shieh. Download full books in PDF and EPUB format.

OFDM for Optical Communications

OFDM for Optical Communications PDF Author: William Shieh
Publisher: Academic Press
ISBN: 9780080952062
Category : Technology & Engineering
Languages : en
Pages : 456

Book Description
The first book on optical OFDM by the leading pioneers in the field The only book to cover error correction codes for optical OFDM Gives applications of OFDM to free-space communications, optical access networks, and metro and log haul transports show optical OFDM can be implemented Contains introductions to signal processing for optical engineers and optical communication fundamentals for wireless engineers This book gives a coherent and comprehensive introduction to the fundamentals of OFDM signal processing, with a distinctive focus on its broad range of applications. It evaluates the architecture, design and performance of a number of OFDM variations, discusses coded OFDM, and gives a detailed study of error correction codes for access networks, 100 Gb/s Ethernet and future optical networks. The emerging applications of optical OFDM, including single-mode fiber transmission, multimode fiber transmission, free space optical systems, and optical access networks are examined, with particular attention paid to passive optical networks, radio-over-fiber, WiMAX and UWB communications. Written by two of the leading contributors to the field, this book will be a unique reference for optical communications engineers and scientists. Students, technical managers and telecom executives seeking to understand this new technology for future-generation optical networks will find the book invaluable. William Shieh is an associate professor and reader in the electrical and electronic engineering department, The University of Melbourne, Australia. He received his M.S. degree in electrical engineering and Ph.D. degree in physics both from University of Southern California. Ivan Djordjevic is an Assistant Professor of Electrical and Computer Engineering at the University of Arizona, Tucson, where he directs the Optical Communications Systems Laboratory (OCSL). His current research interests include optical networks, error control coding, constrained coding, coded modulation, turbo equalization, OFDM applications, and quantum error correction. "This wonderful book is the first one to address the rapidly emerging optical OFDM field. Written by two leading researchers in the field, the book is structured to comprehensively cover any optical OFDM aspect one could possibly think of, from the most fundamental to the most specialized. The book adopts a coherent line of presentation, while striking a thoughtful balance between the various topics, gradually developing the optical-physics and communication-theoretic concepts required for deep comprehension of the topic, eventually treating the multiple optical OFDM methods, variations and applications. In my view this book will remain relevant for many years to come, and will be increasingly accessed by graduate students, accomplished researchers as well as telecommunication engineers and managers keen to attain a perspective on the emerging role of OFDM in the evolution of photonic networks." -- Prof. Moshe Nazarathy, EE Dept., Technion, Israel Institute of Technology * The first book on optical OFDM by the leading pioneers in the field * The only book to cover error correction codes for optical OFDM * Applications of OFDM to free-space communications, optical access networks, and metro and log haul transports show optical OFDM can be implemented * An introduction to signal processing for optical communications * An introduction to optical communication fundamentals for the wireless engineer

OFDM for Optical Communications

OFDM for Optical Communications PDF Author: William Shieh
Publisher: Academic Press
ISBN: 9780080952062
Category : Technology & Engineering
Languages : en
Pages : 456

Book Description
The first book on optical OFDM by the leading pioneers in the field The only book to cover error correction codes for optical OFDM Gives applications of OFDM to free-space communications, optical access networks, and metro and log haul transports show optical OFDM can be implemented Contains introductions to signal processing for optical engineers and optical communication fundamentals for wireless engineers This book gives a coherent and comprehensive introduction to the fundamentals of OFDM signal processing, with a distinctive focus on its broad range of applications. It evaluates the architecture, design and performance of a number of OFDM variations, discusses coded OFDM, and gives a detailed study of error correction codes for access networks, 100 Gb/s Ethernet and future optical networks. The emerging applications of optical OFDM, including single-mode fiber transmission, multimode fiber transmission, free space optical systems, and optical access networks are examined, with particular attention paid to passive optical networks, radio-over-fiber, WiMAX and UWB communications. Written by two of the leading contributors to the field, this book will be a unique reference for optical communications engineers and scientists. Students, technical managers and telecom executives seeking to understand this new technology for future-generation optical networks will find the book invaluable. William Shieh is an associate professor and reader in the electrical and electronic engineering department, The University of Melbourne, Australia. He received his M.S. degree in electrical engineering and Ph.D. degree in physics both from University of Southern California. Ivan Djordjevic is an Assistant Professor of Electrical and Computer Engineering at the University of Arizona, Tucson, where he directs the Optical Communications Systems Laboratory (OCSL). His current research interests include optical networks, error control coding, constrained coding, coded modulation, turbo equalization, OFDM applications, and quantum error correction. "This wonderful book is the first one to address the rapidly emerging optical OFDM field. Written by two leading researchers in the field, the book is structured to comprehensively cover any optical OFDM aspect one could possibly think of, from the most fundamental to the most specialized. The book adopts a coherent line of presentation, while striking a thoughtful balance between the various topics, gradually developing the optical-physics and communication-theoretic concepts required for deep comprehension of the topic, eventually treating the multiple optical OFDM methods, variations and applications. In my view this book will remain relevant for many years to come, and will be increasingly accessed by graduate students, accomplished researchers as well as telecommunication engineers and managers keen to attain a perspective on the emerging role of OFDM in the evolution of photonic networks." -- Prof. Moshe Nazarathy, EE Dept., Technion, Israel Institute of Technology * The first book on optical OFDM by the leading pioneers in the field * The only book to cover error correction codes for optical OFDM * Applications of OFDM to free-space communications, optical access networks, and metro and log haul transports show optical OFDM can be implemented * An introduction to signal processing for optical communications * An introduction to optical communication fundamentals for the wireless engineer

OFDM for Optical Communications

OFDM for Optical Communications PDF Author: William Shieh
Publisher: Academic Press
ISBN: 9780123748799
Category : Technology & Engineering
Languages : en
Pages : 440

Book Description
The first book on optical OFDM by the leading pioneers in the field The only book to cover error correction codes for optical OFDM Gives applications of OFDM to free-space communications, optical access networks, and metro and log haul transports show optical OFDM can be implemented Contains introductions to signal processing for optical engineers and optical communication fundamentals for wireless engineers This book gives a coherent and comprehensive introduction to the fundamentals of OFDM signal processing, with a distinctive focus on its broad range of applications. It evaluates the architecture, design and performance of a number of OFDM variations, discusses coded OFDM, and gives a detailed study of error correction codes for access networks, 100 Gb/s Ethernet and future optical networks. The emerging applications of optical OFDM, including single-mode fiber transmission, multimode fiber transmission, free space optical systems, and optical access networks are examined, with particular attention paid to passive optical networks, radio-over-fiber, WiMAX and UWB communications. Written by two of the leading contributors to the field, this book will be a unique reference for optical communications engineers and scientists. Students, technical managers and telecom executives seeking to understand this new technology for future-generation optical networks will find the book invaluable. William Shieh is an associate professor and reader in the electrical and electronic engineering department, The University of Melbourne, Australia. He received his M.S. degree in electrical engineering and Ph.D. degree in physics both from University of Southern California. Ivan Djordjevic is an Assistant Professor of Electrical and Computer Engineering at the University of Arizona, Tucson, where he directs the Optical Communications Systems Laboratory (OCSL). His current research interests include optical networks, error control coding, constrained coding, coded modulation, turbo equalization, OFDM applications, and quantum error correction. "This wonderful book is the first one to address the rapidly emerging optical OFDM field. Written by two leading researchers in the field, the book is structured to comprehensively cover any optical OFDM aspect one could possibly think of, from the most fundamental to the most specialized. The book adopts a coherent line of presentation, while striking a thoughtful balance between the various topics, gradually developing the optical-physics and communication-theoretic concepts required for deep comprehension of the topic, eventually treating the multiple optical OFDM methods, variations and applications. In my view this book will remain relevant for many years to come, and will be increasingly accessed by graduate students, accomplished researchers as well as telecommunication engineers and managers keen to attain a perspective on the emerging role of OFDM in the evolution of photonic networks." -- Prof. Moshe Nazarathy, EE Dept., Technion, Israel Institute of Technology * The first book on optical OFDM by the leading pioneers in the field * The only book to cover error correction codes for optical OFDM * Applications of OFDM to free-space communications, optical access networks, and metro and log haul transports show optical OFDM can be implemented * An introduction to signal processing for optical communications * An introduction to optical communication fundamentals for the wireless engineer

Advanced Optical Communication Systems and Networks

Advanced Optical Communication Systems and Networks PDF Author: Milorad Cvijetic
Publisher: Artech House
ISBN: 1608075559
Category : Technology & Engineering
Languages : en
Pages : 824

Book Description
This resource provides the latest details on 5th generation photonic systems that can be readily applied to projects in the field. Moreover, the book provides valuable, time-saving tools for network simulation and modeling. It includes coverage of optical signal transmission systems and networks; a wide range of critical methods and techniques, such as MIMO (multiple-input and multiple-output) by employing spatial modes in few-mode and multicore optical fiber; OFDM (orthogonal frequency-division multiplexing) utilized to enhance the spectral efficiency and to enable elastic optical networking schemes; and advanced modulation and coding schemes to approach the Shannon's channel capacity limit. There are detailed discussions on the basic principles and applications of high-speed digital signal processing, as well as description of the most relevant post-detection compensation techniques

AI and IoT-Based Intelligent Automation in Robotics

AI and IoT-Based Intelligent Automation in Robotics PDF Author: Ashutosh Kumar Dubey
Publisher: John Wiley & Sons
ISBN: 1119711207
Category : Computers
Languages : en
Pages : 434

Book Description
The 24 chapters in this book provides a deep overview of robotics and the application of AI and IoT in robotics. It contains the exploration of AI and IoT based intelligent automation in robotics. The various algorithms and frameworks for robotics based on AI and IoT are presented, analyzed, and discussed. This book also provides insights on application of robotics in education, healthcare, defense and many other fields which utilize IoT and AI. It also introduces the idea of smart cities using robotics.

Optical Fiber and Wireless Communications

Optical Fiber and Wireless Communications PDF Author: Rastislav Róka
Publisher: BoD – Books on Demand
ISBN: 953513275X
Category : Technology & Engineering
Languages : en
Pages : 374

Book Description
The book Optical Fiber and Wireless Communications provides a platform for practicing researchers, academics, PhD students, and other scientists to review, plan, design, analyze, evaluate, intend, process, and implement diversiform issues of optical fiber and wireless systems and networks, optical technology components, optical signal processing, and security. The 17 chapters of the book demonstrate capabilities and potentialities of optical communication to solve scientific and engineering problems with varied degrees of complexity.

Optical Communications and Networking

Optical Communications and Networking PDF Author: Zhongqi Pan
Publisher: MDPI
ISBN: 3039282581
Category : Technology & Engineering
Languages : en
Pages : 132

Book Description
In the past few decades, the optical communication industry has explored multiple degrees of freedom of the photon, such as time, wavelength, amplitude, phase, polarization, and space, to significantly reduce the cost/bit of data transmission by increasing the capacity per fiber through multiplexing technology and by reducing the size and power through electronic and photonic integration. This book aims to explore the latest advancements in this industry, including the technologies in devices, systems, and network levels with applications from short-reach chip-to-chip interconnections to long-haul backbone communications at the trans-oceanic distance.

Digital Signal Processing for High-Speed Optical Communication

Digital Signal Processing for High-Speed Optical Communication PDF Author: Jianjun Yu
Publisher: World Scientific Publishing Company
ISBN: 9813233990
Category : Technology & Engineering
Languages : en
Pages : 276

Book Description


Optical Communications

Optical Communications PDF Author: Alberto Paradisi
Publisher: Springer
ISBN: 3319971875
Category : Technology & Engineering
Languages : en
Pages : 261

Book Description
This book focuses on recent research and developments on optical communications. The chapters present different aspects of optical communication systems, comprising high capacity transmission over long distances, coherent and intensity modulated technologies, orthogonal frequency-division multiplexing, ultrafast switching techniques, and photonic integrated devices. Digital signal processing and error correction techniques are also addressed. The content is of interest to graduate students and researchers in optical communications.

Orthogonal Frequency-division Multiplexing for Optical Communications

Orthogonal Frequency-division Multiplexing for Optical Communications PDF Author: Daniel Jose Fernandes Barros
Publisher: Stanford University
ISBN:
Category :
Languages : en
Pages : 160

Book Description
The drive towards higher spectral efficiency and maximum power efficiency in optical systems has generated renewed interest in the optimization of optical transceivers. In this work, we study the different optical applications: Wide Area Networks (WANs), Metropolitan Area Networks (MANs), Local Area Networks (LANs) and Personal Area Networks (PANs). In WANs or long-haul systems, orthogonal frequency-division multiplexing (OFDM) can compensate for linear distortions, such as group-velocity dispersion (GVD) and polarization-mode dispersion (PMD), provided the cyclic prefix is sufficiently long. Typically, GVD is dominant, as it requires a longer cyclic prefix. Assuming coherent detection, we show how to analytically compute the minimum number of subcarriers and cyclic prefix length required to achieve a specified power penalty, trading off power penalties from the cyclic prefix and from residual inter-symbol interference (ISI) and inter-carrier interference (ICI). We derive an analytical expression for the power penalty from residual ISI and ICI. We also show that when nonlinear effects are present in the fiber, single-carrier with digital equalization outperforms OFDM for various dispersion maps. We also study the impairments of electrical to optical conversion when using Mach-Zehnder (MZ) modulators. OFDM has a high peak-to-average ratio (PAR), which can result in low optical power efficiency when modulated through a Mach-Zehnder (MZ) modulator. In addition, the nonlinear characteristic of the MZ can cause significant distortion on the OFDM signal, leading to in-band intermodulation products between subcarriers. We show that a quadrature MZ with digital pre-distortion and hard clipping is able to overcome the previous impairments. We consider quantization noise and compute the minimum number of bits required in the digital-to-analog converter (D/A). Finally, we discuss a dual-drive MZ as a simpler alternative for the OFDM modulator, but our results show that it requires a higher oversampling ratio to achieve the same performance as the quadrature MZ. In MANs, we discuss the use OFDM for combating GVD effects in amplified direct-detection (DD) systems using single-mode fiber. We review known direct-detection OFDM techniques, including asymmetrically clipped optical OFDM (ACO-OFDM), DC-clipped OFDM (DC-OFDM) and single-sideband OFDM (SSB-OFDM), and derive a linearized channel model for each technique. We present an iterative procedure to achieve optimum power allocation for each OFDM technique, since there is no closed-form solution for amplified DD systems. For each technique, we minimize the optical power required to transmit at a given bit rate and normalized GVD by iteratively adjusting the bias and optimizing the power allocation among the subcarriers. We verify that SSB-OFDM has the best optical power efficiency among the different OFDM techniques. We compare these OFDM techniques to on-off keying (OOK) with maximum-likelihood sequence detection (MLSD) and show that SSB-OFDM can achieve the same optical power efficiency as OOK with MLSD, but at the cost of requiring twice the electrical bandwidth and also a complex quadrature modulator. We compare the computational complexity of the different techniques and show that SSB-OFDM requires fewer operations per bit than OOK with MLSD. In LANs, we compare the performance of several OFDM schemes to that of OOK in combating modal dispersion in multimode fiber links. We review known OFDM techniques using intensity modulation with direct detection (IM/DD), including DC-OFDM, ACO-OFDM and pulse-amplitude modulated discrete multitone (PAM-DMT). We describe an iterative procedure to achieve optimal power allocation for DC-OFDM, and compare analytically the performance of ACO-OFDM and PAM-DMT. We also consider unipolar M-ary pulse-amplitude modulation (M-PAM) with minimum mean-square error decision-feedback equalization (MMSE-DFE). For each technique, we quantify the optical power required to transmit at a given bit rate in a variety of multimode fibers. For a given symbol rate, we find that unipolar M-PAM with MMSE-DFE has a better power performance than all OFDM formats. Furthermore, we observe that the difference in performance between M-PAM and OFDM increases as the spectral efficiency increases. We also find that at a spectral efficiency of 1 bit/symbol, OOK performs better than ACO-OFDM using a symbol rate twice that of OOK. At higher spectral efficiencies, M-PAM performs only slightly better than ACO-OFDM using twice the symbol rate, but requires less electrical bandwidth and can employ analog-to-digital converters at a speed only 81% of that required for ACO-OFDM. In PANs, we evaluate the performance of the three IM/DD OFDM schemes in combating multipath distortion in indoor optical wireless links, comparing them to unipolar M-PAM with MMSE-DFE. For each modulation method, we quantify the received electrical SNR required at a given bit rate on a given channel, considering an ensemble of 170 indoor wireless channels. When using the same symbol rate for all modulation methods, M-PAM with MMSE-DFE has better performance than any OFDM format over a range of spectral efficiencies, with the advantage of M-PAM increasing at high spectral efficiency. ACO-OFDM and PAM-DMT have practically identical performance at any spectral efficiency. They are the best OFDM formats at low spectral efficiency, whereas DC-OFDM is best at high spectral efficiency. When ACO-OFDM or PAM-DMT are allowed to use twice the symbol rate of M-PAM, these OFDM formats have better performance than M-PAM. When channel state information is unavailable at the transmitter, however, M-PAM significantly outperforms all OFDM formats. When using the same symbol rate for all modulation methods, M-PAM requires approximately three times more computational complexity per processor than all OFDM formats and 63% faster analog-to-digital converters, assuming oversampling ratios of 1.23 and 2 for ACO-OFDM and M-PAM, respectively. When OFDM uses twice the symbol rate of M-PAM, OFDM requires 23% faster analog-to-digital converters than M-PAM but OFDM requires approximately 40% less computational complexity than M-PAM per processor.

Optical and Wireless Technologies

Optical and Wireless Technologies PDF Author: Vijay Janyani
Publisher: Springer
ISBN: 9811361592
Category : Technology & Engineering
Languages : en
Pages : 567

Book Description
This volume presents selected papers from the 2nd International Conference on Optical and Wireless Technologies, conducted from 10th to 11th February, 2018. It focuses on extending the limits of currently used systems encompassing optical and wireless domains, and explores novel research on wireless and optical techniques and systems, describing practical implementation activities, results and issues. The book will serve as a valuable reference resource for academics and researchers across the globe.