On the Edge of Magnetic Fusion Devices

On the Edge of Magnetic Fusion Devices PDF Author: Sergei Krasheninnikov
Publisher: Springer Nature
ISBN: 3030495949
Category : Science
Languages : en
Pages : 269

Book Description
This book reviews the current state of understanding concerning edge plasma, which bridges hot fusion plasma, with a temperature of roughly one million degrees Kelvin with plasma-facing materials, which have melting points of only a few thousand degrees Kelvin. In a fact, edge plasma is one of the keys to solution for harnessing fusion energy in magnetic fusion devices. The physics governing the processes at work in the edge plasma involves classical and anomalous transport of multispecies plasma, neutral gas dynamics, atomic physics effects, radiation transport, plasma-material interactions, and even the transport of plasma species within the plasma-facing materials. The book starts with simple physical models, then moves on to rigorous theoretical considerations and state-of-the-art simulation tools that are capable of capturing the most important features of the edge plasma phenomena. The authors compare the conclusions arising from the theoretical and computational analysis with the available experimental data. They also discuss the remaining gaps in their models and make projections for phenomena related to edge plasma in magnetic fusion reactors.

The Plasma Boundary of Magnetic Fusion Devices

The Plasma Boundary of Magnetic Fusion Devices PDF Author: P.C Stangeby
Publisher: CRC Press
ISBN: 9780750305594
Category : Science
Languages : en
Pages : 738

Book Description
The Plasma Boundary of Magnetic Fusion Devices introduces the physics of the plasma boundary region, including plasma-surface interactions, with an emphasis on those occurring in magnetically confined fusion plasmas. The book covers plasma-surface interaction, Debye sheaths, sputtering, scrape-off layers, plasma impurities, recycling and control, 1D and 2D fluid and kinetic modeling of particle transport, plasma properties at the edge, diverter and limiter physics, and control of the plasma boundary. Divided into three parts, the book begins with Part 1, an introduction to the plasma boundary. The derivations are heuristic and worked problems help crystallize physical intuition, which is emphasized throughout. Part 2 provides an introduction to methods of modeling the plasma edge region and for interpreting computer code results. Part 3 presents a collection of essays on currently active research hot topics. With an extensive bibliography and index, this book is an invaluable first port-of-call for researchers interested in plasma-surface interactions.

Magnetic Fusion Energy

Magnetic Fusion Energy PDF Author: George Neilson
Publisher: Woodhead Publishing
ISBN: 0081003269
Category : Science
Languages : en
Pages : 632

Book Description
Magnetic Fusion Energy: From Experiments to Power Plants is a timely exploration of the field, giving readers an understanding of the experiments that brought us to the threshold of the ITER era, as well as the physics and technology research needed to take us beyond ITER to commercial fusion power plants. With the start of ITER construction, the world’s magnetic fusion energy (MFE) enterprise has begun a new era. The ITER scientific and technical (S&T) basis is the result of research on many fusion plasma physics experiments over a period of decades. Besides ITER, the scope of fusion research must be broadened to create the S&T basis for practical fusion power plants, systems that will continuously convert the energy released from a burning plasma to usable electricity, operating for years with only occasional interruptions for scheduled maintenance. Provides researchers in academia and industry with an authoritative overview of the significant fusion energy experiments Considers the pathway towards future development of magnetic fusion energy power plants Contains experts contributions from editors and others who are well known in the field

Magnetic Fusion Technology

Magnetic Fusion Technology PDF Author: Thomas J. Dolan
Publisher: Springer Science & Business Media
ISBN: 1447155564
Category : Technology & Engineering
Languages : en
Pages : 801

Book Description
Magnetic Fusion Technology describes the technologies that are required for successful development of nuclear fusion power plants using strong magnetic fields. These technologies include: • magnet systems, • plasma heating systems, • control systems, • energy conversion systems, • advanced materials development, • vacuum systems, • cryogenic systems, • plasma diagnostics, • safety systems, and • power plant design studies. Magnetic Fusion Technology will be useful to students and to specialists working in energy research.

Nuclear Fusion

Nuclear Fusion PDF Author: C.M. Braams
Publisher: CRC Press
ISBN: 9781420033786
Category : Science
Languages : en
Pages : 352

Book Description
Fusion research started over half a century ago. Although the task remains unfinished, the end of the road could be in sight if society makes the right decisions. Nuclear Fusion: Half a Century of Magnetic Confinement Fusion Research is a careful, scholarly account of the course of fusion energy research over the past fifty years. The authors outline the different paths followed by fusion research from initial ignorance to present understanding. They explore why a particular scheme would not work and why it was more profitable to concentrate on the mainstream tokamak development. The book features descriptive sections, in-depth explanations of certain physical and technical issues, scientific terms, and an extensive glossary that explains relevant abbreviations and acronyms.

Plasma Physics and Fusion Energy

Plasma Physics and Fusion Energy PDF Author: Jeffrey P. Freidberg
Publisher: Cambridge University Press
ISBN: 1139462156
Category : Science
Languages : en
Pages : 6

Book Description
There has been an increase in interest worldwide in fusion research over the last decade and a half due to the recognition that a large number of new, environmentally attractive, sustainable energy sources will be needed to meet ever increasing demand for electrical energy. Based on a series of course notes from graduate courses in plasma physics and fusion energy at MIT, the text begins with an overview of world energy needs, current methods of energy generation, and the potential role that fusion may play in the future. It covers energy issues such as the production of fusion power, power balance, the design of a simple fusion reactor and the basic plasma physics issues faced by the developers of fusion power. This book is suitable for graduate students and researchers working in applied physics and nuclear engineering. A large number of problems accumulated over two decades of teaching are included to aid understanding.

Utilization of a Network of Small Magnetic Confinement Fusion Devices for Mainstream Fusion Research

Utilization of a Network of Small Magnetic Confinement Fusion Devices for Mainstream Fusion Research PDF Author: International Atomic Energy Agency
Publisher:
ISBN: 9789201104168
Category : Technology & Engineering
Languages : en
Pages : 0

Book Description
Small magnetic confinement fusion devices have played and continue to play an important role in fusion research. Thanks to their compactness, flexibility and low operation costs, they can support scientific and technology developments, modelling analysis, and training and education. This publication presents the outcome of an IAEA coordinated research project on utilisation of a network of small magnetic confinement fusion devices for mainstream fusion research and reports on the research work accomplished within the framework of the project. It presents the contribution of these devices in research in a wide range of areas such as plasma confinement and energy transport, plasma stability in different magnetic configurations, plasma turbulence and its impact on local and global plasma parameters, processes at the plasma edge and plasma-wall interaction, scenarios with additional heating and non-inductive current drive.

Physics of Plasma-Wall Interactions in Controlled Fusion

Physics of Plasma-Wall Interactions in Controlled Fusion PDF Author: D. E. Post
Publisher: Springer Science & Business Media
ISBN: 1475700679
Category : Science
Languages : en
Pages : 1178

Book Description
Controlled thermonuclear fusion is one of the possible candidates for long term energy sources which will be indispensable for our highly technological society. However, the physics and technology of controlled fusion are extremely complex and still require a great deal of research and development before fusion can be a practical energy source. For producing energy via controlled fusion a deuterium-tritium gas has to be heated to temperatures of a few 100 Million °c corres ponding to about 10 keV. For net energy gain, this hot plasma has to be confined at a certain density for a certain time One pro mising scheme to confine such a plasma is the use of i~tense mag netic fields. However, the plasma diffuses out of the confining magnetic surfaces and impinges on the surrounding vessel walls which isolate the plasma from the surrounding air. Because of this plasma wall interaction, particles from the plasma are lost to the walls by implantation and are partially reemitted into the plasma. In addition, wall atoms are released and can enter the plasma. These wall atoms or impurities can deteriorate the plasma performance due to enhanced energy losses through radiation and an increase of the required magnetic pressure or a dilution of the fuel in the plasma. Finally, the impact of the plasma and energy on the wall can modify and deteriorate the thermal and mechanical pro perties of the vessel walls.

New Developments in Nuclear Fusion Research

New Developments in Nuclear Fusion Research PDF Author: Y. Nakamura
Publisher: Nova Publishers
ISBN: 9781594544866
Category : Science
Languages : en
Pages : 294

Book Description
Nuclear fusion is a process in which two nuclei join, forming a larger nucleus and releasing or absorbing energy. With some exceptions, nuclei lighter than iron release energy when they fuse, while heavier nuclei absorb energy; this is because iron has the largest binding energy. Nuclear fusion of light elements is the energy source which causes stars to shine and hydrogen bombs to explode. Nuclear fusion of heavy elements is part of the process that triggers supernovae. Nuclear fusion as an energy source has several advantages: It is vast, new source of energy; Fuels are plentiful; Inherently safe since any malfunction results in a rapid shutdown; No atmospheric pollution leading to acid rain or "greenhouse" effect; Radioactivity of the reactor structure, caused by the neutrons, decays rapidly and can be minimised by careful selection of low-activation materials. Provision for geological time-span disposal is not needed. This book brings together leading research in this field which will play a major role in the 21st century.

Magnetic Stochasticity in Magnetically Confined Fusion Plasmas

Magnetic Stochasticity in Magnetically Confined Fusion Plasmas PDF Author: Sadrilla Abdullaev
Publisher: Springer Science & Business Media
ISBN: 3319018906
Category : Science
Languages : en
Pages : 412

Book Description
This is the first book to systematically consider the modern aspects of chaotic dynamics of magnetic field lines and charged particles in magnetically confined fusion plasmas. The analytical models describing the generic features of equilibrium magnetic fields and magnetic perturbations in modern fusion devices are presented. It describes mathematical and physical aspects of onset of chaos, generic properties of the structure of stochastic magnetic fields, transport of charged particles in tokamaks induced by magnetic perturbations, new aspects of particle turbulent transport, etc. The presentation is based on the classical and new unique mathematical tools of Hamiltonian dynamics, like the action--angle formalism, classical perturbation theory, canonical transformations of variables, symplectic mappings, the Poincaré-Melnikov integrals. They are extensively used for analytical studies as well as for numerical simulations of magnetic field lines, particle dynamics, their spatial structures and statistical properties. The numerous references to articles on the latest development in the area are provided. The book is intended for graduate students and researchers who interested in the modern problems of magnetic stochasticity in magnetically confined fusion plasmas. It is also useful for physicists and mathematicians interested in new methods of Hamiltonian dynamics and their applications.