Performance of Solar Electric Powered Deep Space Missions Using Hall Thruster Propulsion PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Performance of Solar Electric Powered Deep Space Missions Using Hall Thruster Propulsion PDF full book. Access full book title Performance of Solar Electric Powered Deep Space Missions Using Hall Thruster Propulsion by National Aeronautics and Space Administration (NASA). Download full books in PDF and EPUB format.

Performance of Solar Electric Powered Deep Space Missions Using Hall Thruster Propulsion

Performance of Solar Electric Powered Deep Space Missions Using Hall Thruster Propulsion PDF Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
ISBN: 9781720660897
Category :
Languages : en
Pages : 28

Book Description
Power limited, low-thrust trajectories were assessed for missions to Jupiter, Saturn, and Neptune utilizing a single Venus Gravity Assist (VGA) and a primary propulsion system based on either a 3-kW high voltage Hall thruster, of the type being developed by the NASA In-Space Propulsion Technology Program, or an 8-kW variant of this thruster. These Hall thrusters operate with specific impulses below 3,000 seconds. A trade study was conducted to examine mission parameters that include: net delivered mass (NDM), beginning-of-life (BOL) solar array power, heliocentric transfer time, required launch vehicle, number of operating thrusters, and throttle profile. The top performing spacecraft configuration was defined to be the one that delivered the highest mass for a range of transfer times. In order to evaluate the potential future benefit of using next generation Hall thrusters as the primary propulsion system, comparisons were made with the advanced state-of-the-art (ASOA), 7-kW, 4,100 second NASA's Evolutionary Xenon Thruster (NEXT) for the same mission scenarios. For the BOL array powers considered in this study (less than 30 kW), the results show that the performance of the Hall thrusters, relative to NEXT, is largely dependant on the performance capability of the launch vehicle, and that at least a 10 percent performance gain, equating to at least an additional 200 kg dry mass at each target planet, is achieved over the higher specific impulse NEXT when launched on an Atlas 551.Witzberger, Kevin E. and Manzella, DavidGlenn Research CenterHALL THRUSTERS; SOLAR ELECTRIC PROPULSION; DEEP SPACE 1 MISSION; SPACECRAFT CONFIGURATIONS; NASA SPACE PROGRAMS; SOLAR ARRAYS; POWER CONDITIONING; MATHEMATICAL MODELS; SPECIFIC IMPULSE; HIGH VOLTAGES; NEPTUNE (PLANET); SATURN (PLANET); LAUNCH VEHICLES

Performance of Solar Electric Powered Deep Space Missions Using Hall Thruster Propulsion

Performance of Solar Electric Powered Deep Space Missions Using Hall Thruster Propulsion PDF Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
ISBN: 9781720660897
Category :
Languages : en
Pages : 28

Book Description
Power limited, low-thrust trajectories were assessed for missions to Jupiter, Saturn, and Neptune utilizing a single Venus Gravity Assist (VGA) and a primary propulsion system based on either a 3-kW high voltage Hall thruster, of the type being developed by the NASA In-Space Propulsion Technology Program, or an 8-kW variant of this thruster. These Hall thrusters operate with specific impulses below 3,000 seconds. A trade study was conducted to examine mission parameters that include: net delivered mass (NDM), beginning-of-life (BOL) solar array power, heliocentric transfer time, required launch vehicle, number of operating thrusters, and throttle profile. The top performing spacecraft configuration was defined to be the one that delivered the highest mass for a range of transfer times. In order to evaluate the potential future benefit of using next generation Hall thrusters as the primary propulsion system, comparisons were made with the advanced state-of-the-art (ASOA), 7-kW, 4,100 second NASA's Evolutionary Xenon Thruster (NEXT) for the same mission scenarios. For the BOL array powers considered in this study (less than 30 kW), the results show that the performance of the Hall thrusters, relative to NEXT, is largely dependant on the performance capability of the launch vehicle, and that at least a 10 percent performance gain, equating to at least an additional 200 kg dry mass at each target planet, is achieved over the higher specific impulse NEXT when launched on an Atlas 551.Witzberger, Kevin E. and Manzella, DavidGlenn Research CenterHALL THRUSTERS; SOLAR ELECTRIC PROPULSION; DEEP SPACE 1 MISSION; SPACECRAFT CONFIGURATIONS; NASA SPACE PROGRAMS; SOLAR ARRAYS; POWER CONDITIONING; MATHEMATICAL MODELS; SPECIFIC IMPULSE; HIGH VOLTAGES; NEPTUNE (PLANET); SATURN (PLANET); LAUNCH VEHICLES

Performance of Solar Electric Powered Deep Space Missions Using Hall Thruster Propulsion

Performance of Solar Electric Powered Deep Space Missions Using Hall Thruster Propulsion PDF Author: Kevin E. Witzberger
Publisher:
ISBN:
Category : Space vehicles
Languages : en
Pages : 21

Book Description


Fundamentals of Electric Propulsion

Fundamentals of Electric Propulsion PDF Author: Dan M. Goebel
Publisher: John Wiley & Sons
ISBN: 0470436263
Category : Technology & Engineering
Languages : en
Pages : 528

Book Description
Throughout most of the twentieth century, electric propulsion was considered the technology of the future. Now, the future has arrived. This important new book explains the fundamentals of electric propulsion for spacecraft and describes in detail the physics and characteristics of the two major electric thrusters in use today, ion and Hall thrusters. The authors provide an introduction to plasma physics in order to allow readers to understand the models and derivations used in determining electric thruster performance. They then go on to present detailed explanations of: Thruster principles Ion thruster plasma generators and accelerator grids Hollow cathodes Hall thrusters Ion and Hall thruster plumes Flight ion and Hall thrusters Based largely on research and development performed at the Jet Propulsion Laboratory (JPL) and complemented with scores of tables, figures, homework problems, and references, Fundamentals of Electric Propulsion: Ion and Hall Thrusters is an indispensable textbook for advanced undergraduate and graduate students who are preparing to enter the aerospace industry. It also serves as an equally valuable resource for professional engineers already at work in the field.

Thermionics Quo Vadis?

Thermionics Quo Vadis? PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 030908282X
Category : Science
Languages : en
Pages : 85

Book Description
This report evaluates the Defense Threat Reduction Agency prior and present sponsored efforts; assess the present state of the art in thermionic energy conversion systems; assess the technical challenges to the development of viable thermionic energy conversion systems for both space and terrestrial applications; and recommend a prioritized set of objectives for a future research and development program for advanced thermionic systems for space and terrestrial applications.

The International Handbook of Space Technology

The International Handbook of Space Technology PDF Author: Malcolm Macdonald
Publisher: Springer
ISBN: 3642411010
Category : Technology & Engineering
Languages : en
Pages : 731

Book Description
This comprehensive handbook provides an overview of space technology and a holistic understanding of the system-of-systems that is a modern spacecraft. With a foreword by Elon Musk, CEO and CTO of SpaceX, and contributions from globally leading agency experts from NASA, ESA, JAXA, and CNES, as well as European and North American academics and industrialists, this handbook, as well as giving an interdisciplinary overview, offers, through individual self-contained chapters, more detailed understanding of specific fields, ranging through: · Launch systems, structures, power, thermal, communications, propulsion, and software, to · entry, descent and landing, ground segment, robotics, and data systems, to · technology management, legal and regulatory issues, and project management. This handbook is an equally invaluable asset to those on a career path towards the space industry as it is to those already within the industry.

Technologies for Deep Space Exploration

Technologies for Deep Space Exploration PDF Author: Zezhou Sun
Publisher: Springer Nature
ISBN: 9811547947
Category : Technology & Engineering
Languages : en
Pages : 630

Book Description
This book offers readers essential insights into system design for deep space probes and describes key aspects such as system design, orbit design, telecommunication, GNC, thermal control, propulsion, aerobraking and scientific payload. Each chapter includes the basic principles, requirements analysis, procedures, equations and diagrams, as well as practical examples that will help readers to understand the research on each technology and the major concerns when it comes to developing deep space probes. An excellent reference resource for researchers and engineers interested in deep space exploration, it can also serve as a textbook for university students and those at institutes involved in aerospace.

Solar Power System Options for the Radiation and Technology Demonstration Spacecraft

Solar Power System Options for the Radiation and Technology Demonstration Spacecraft PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 18

Book Description


NASA Space Technology Roadmaps and Priorities

NASA Space Technology Roadmaps and Priorities PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309253624
Category : Science
Languages : en
Pages : 376

Book Description
NASA's Office of the Chief Technologist (OCT) has begun to rebuild the advanced space technology program in the agency with plans laid out in 14 draft technology roadmaps. It has been years since NASA has had a vigorous, broad-based program in advanced space technology development and its technology base has been largely depleted. However, success in executing future NASA space missions will depend on advanced technology developments that should already be underway. Reaching out to involve the external technical community, the National Research Council (NRC) considered the 14 draft technology roadmaps prepared by OCT and ranked the top technical challenges and highest priority technologies that NASA should emphasize in the next 5 years. This report provides specific guidance and recommendations on how the effectiveness of the technology development program managed by OCT can be enhanced in the face of scarce resources.

Performance Evaluation of the SPT-140

Performance Evaluation of the SPT-140 PDF Author:
Publisher:
ISBN:
Category : Electric propulsion
Languages : en
Pages : 14

Book Description


High-Power Hall Propulsion Development at NASA Glenn Research Center

High-Power Hall Propulsion Development at NASA Glenn Research Center PDF Author: National Aeronautics and Space Adm Nasa
Publisher: Independently Published
ISBN: 9781793968333
Category : Science
Languages : en
Pages : 30

Book Description
The NASA Office of the Chief Technologist Game Changing Division is sponsoring the development and testing of enabling technologies to achieve efficient and reliable human space exploration. High-power solar electric propulsion has been proposed by NASA's Human Exploration Framework Team as an option to achieve these ambitious missions to near Earth objects. NASA Glenn Research Center (NASA Glenn) is leading the development of mission concepts for a solar electric propulsion Technical Demonstration Mission. The mission concepts are highlighted in this paper but are detailed in a companion paper. There are also multiple projects that are developing technologies to support a demonstration mission and are also extensible to NASA's goals of human space exploration. Specifically, the In-Space Propulsion technology development project at NASA Glenn has a number of tasks related to high-power Hall thrusters including performance evaluation of existing Hall thrusters; performing detailed internal discharge chamber, near-field, and far-field plasma measurements; performing detailed physics-based modeling with the NASA Jet Propulsion Laboratory's Hall2De code; performing thermal and structural modeling; and developing high-power efficient discharge modules for power processing. This paper summarizes the various technology development tasks and progress made to date Kamhawi, Hani and Manzella, David H. and Smith, Timothy D. and Schmidt, George R. Glenn Research Center WBS 182603.01.04.02