Physics of Minerals and Inorganic Materials PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Physics of Minerals and Inorganic Materials PDF full book. Access full book title Physics of Minerals and Inorganic Materials by A.S. Marfunin. Download full books in PDF and EPUB format.

Physics of Minerals and Inorganic Materials

Physics of Minerals and Inorganic Materials PDF Author: A.S. Marfunin
Publisher: Springer
ISBN:
Category : Science
Languages : en
Pages : 362

Book Description
The physics of minerals in a broad sense implies the fundamental aspects of understanding mineral matter: the electronic structure of atoms related to their behavior in geochemical processes; the atomic and electronic structures of minerals; the properties of minerals, with their genetic, geophysical, and technical significance, and their pressure and temperature dependence; the mechanisms of phenomena and reactions in mineral formation and transformation processes; the physical me thods applied in mineralogical, geochemical and petrological studies, and to a great extent in geological surveys and prospecting. In a narrower sense, it is a branch lying in the border area between mineralogy and solid-state physics, dealing with those aspects of mine ralogy which require, for their understanding and investigation, special knowledge in contemporary physics and chemistry of solids. The physics of minerals accounts for the third crucial change within this century in the conceptual foundations of mineralogy: after physi cochemical mineralogy, from experimental studies of phase relations to parage netic analyses, and crystal chemistry of minerals, there followed solid-state physics, which has evolved to its present state over the past 25 years. The task of mineralogy has expanded greatly. In addition to the identification and description of minerals, it is becoming necessary to establish the relationships between structure, composition and properties of minerals and their genesis, their distribution within geological regions, magmatic, metamorphic and sedimentary formations and types of ore deposits. The development of new methods of investigation requires an understanding of the physical meaning of the parameters under evaluation.

Physics of Minerals and Inorganic Materials

Physics of Minerals and Inorganic Materials PDF Author: A.S. Marfunin
Publisher: Springer
ISBN:
Category : Science
Languages : en
Pages : 362

Book Description
The physics of minerals in a broad sense implies the fundamental aspects of understanding mineral matter: the electronic structure of atoms related to their behavior in geochemical processes; the atomic and electronic structures of minerals; the properties of minerals, with their genetic, geophysical, and technical significance, and their pressure and temperature dependence; the mechanisms of phenomena and reactions in mineral formation and transformation processes; the physical me thods applied in mineralogical, geochemical and petrological studies, and to a great extent in geological surveys and prospecting. In a narrower sense, it is a branch lying in the border area between mineralogy and solid-state physics, dealing with those aspects of mine ralogy which require, for their understanding and investigation, special knowledge in contemporary physics and chemistry of solids. The physics of minerals accounts for the third crucial change within this century in the conceptual foundations of mineralogy: after physi cochemical mineralogy, from experimental studies of phase relations to parage netic analyses, and crystal chemistry of minerals, there followed solid-state physics, which has evolved to its present state over the past 25 years. The task of mineralogy has expanded greatly. In addition to the identification and description of minerals, it is becoming necessary to establish the relationships between structure, composition and properties of minerals and their genesis, their distribution within geological regions, magmatic, metamorphic and sedimentary formations and types of ore deposits. The development of new methods of investigation requires an understanding of the physical meaning of the parameters under evaluation.

Physics of Minerals and Inorganic Materials

Physics of Minerals and Inorganic Materials PDF Author: A.S. Marfunin
Publisher: Springer
ISBN: 9783642670442
Category : Science
Languages : en
Pages : 0

Book Description
The physics of minerals in a broad sense implies the fundamental aspects of understanding mineral matter: the electronic structure of atoms related to their behavior in geochemical processes; the atomic and electronic structures of minerals; the properties of minerals, with their genetic, geophysical, and technical significance, and their pressure and temperature dependence; the mechanisms of phenomena and reactions in mineral formation and transformation processes; the physical me thods applied in mineralogical, geochemical and petrological studies, and to a great extent in geological surveys and prospecting. In a narrower sense, it is a branch lying in the border area between mineralogy and solid-state physics, dealing with those aspects of mine ralogy which require, for their understanding and investigation, special knowledge in contemporary physics and chemistry of solids. The physics of minerals accounts for the third crucial change within this century in the conceptual foundations of mineralogy: after physi cochemical mineralogy, from experimental studies of phase relations to parage netic analyses, and crystal chemistry of minerals, there followed solid-state physics, which has evolved to its present state over the past 25 years. The task of mineralogy has expanded greatly. In addition to the identification and description of minerals, it is becoming necessary to establish the relationships between structure, composition and properties of minerals and their genesis, their distribution within geological regions, magmatic, metamorphic and sedimentary formations and types of ore deposits. The development of new methods of investigation requires an understanding of the physical meaning of the parameters under evaluation.

Physics of minerals and inorganic materials

Physics of minerals and inorganic materials PDF Author: Arnold S. Marfuin
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Synthesis, Properties and Mineralogy of Important Inorganic Materials

Synthesis, Properties and Mineralogy of Important Inorganic Materials PDF Author: Terence E. Warner
Publisher: John Wiley & Sons
ISBN: 0470976020
Category : Science
Languages : en
Pages : 289

Book Description
Intended as a textbook for courses involving preparative solid-state chemistry, this book offers clear and detailed descriptions on how to prepare a selection of inorganic materials that exhibit important optical, magnetic and electrical properties, on a laboratory scale. The text covers a wide range of preparative methods and can be read as separate, independent chapters or as a unified coherent body of work. Discussions of various chemical systems reveal how the properties of a material can often be influenced by modifications to the preparative procedure, and vice versa. References to mineralogy are made throughout the book since knowledge of naturally occurring inorganic substances is helpful in devising many of the syntheses and in characterizing the product materials. A set of questions at the end of each chapter helps to connect theory with practice, and an accompanying solutions manual is available to instructors. This book is also of appeal to postgraduate students, post-doctoral researchers and those working in industry requiring knowledge of solid-state synthesis.

Ultrahigh Pressure Mineralogy

Ultrahigh Pressure Mineralogy PDF Author: Russell J. Hemley
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 1501509179
Category : Science
Languages : en
Pages : 688

Book Description
Volume 37 of Reviews in Mineralogy, divided into three sections, begins with an overview (Chapter 1) of the remarkable advances in the ability to subject minerals-not only as pristine single-crystal samples but also complex, natural mineral assemblages-to extreme pressure-temperature conditions in the laboratory. These advances parallel the development of an arsenal of analytical methods for measuring mineral behavior under those conditions. This sets the stage for section two (Chapters 2-8) which focuses on high-pressure minerals in their geological setting as a function of depth. This top-down approach begins with what we know from direct sampling of high-pressure minerals and rocks brought to the surface to detailed geophysical observations of the vast interior. The third section (Chapters 9-19) presents the material fundamentals, starting from properties of a chemical nature, such as crystal chemistry, thermochemistry, element partitioning, and melting, and moving toward the domain of mineral physics such as melt properties, equations of state, elasticity, rheology, vibrational dynamics, bonding, electronic structure, and magnetism. The Review thus moves from the complexity of rocks to their mineral components and finally to fundamental properties arising directly from the play of electrons and nuclei. This volume was prepared for a short course by the same title, organized by Russell J. Hemley and Ho-kwang Mao and sponsored by the Mineralogical Society of America, December 4-6, 1998 on the campus of the University of California at Davis.

Properties of Complex Inorganic Solids 2

Properties of Complex Inorganic Solids 2 PDF Author: Annemarie Meike
Publisher: Springer Science & Business Media
ISBN: 1461512050
Category : Science
Languages : en
Pages : 512

Book Description
The triennial International Alloy Conferences (lACs) aim at the identification and promotion of the common elements developed in the study, either experimental, phenomenological, or theoretical and computational, of materials properties across materials types, from metals to minerals. To accomplish this goal, the lACs bring together scientists from a wide spectrum of materials science including experiment, theory, modeling, and computation, incorporating a broad range of materials properties. The first lAC, lAC-I, took place in Athens, Greece, June 16-21, 1996. The present volume of proceedings contains the papers presented at IAC-2, that took place in Davos, Switzerland, August 8-13, 1999. The topics in this book fall into several themes, which suggest a number of different classification schemes. We have chosen a scheme that classifies the papers in the volume into the categories Microstructural Properties; Ordering, Kinetics and Diffusion; Magnetic Properties and Elastic Properties. We have juxtaposed apparently disparate of revealing the dynamic character approaches to similar physical processes, in the hope of the processes under consideration. We hope this will invigorate new kinds of discussion and reveal challenges and new avenues to the description and prediction of properties of materials in the solid state and the conditions that produce them.

Structure and Properties of Inorganic Solids

Structure and Properties of Inorganic Solids PDF Author: Francis S. Galasso
Publisher: Elsevier
ISBN: 1483155412
Category : Science
Languages : en
Pages : 308

Book Description
Structure and Properties of Inorganic Solids, Volume 7 is a reference book that describes the structure of metals, intermetallics, halides, hydrides, carbides, borides, and other inorganic phases as well as some of their properties. Among the inorganic solids discussed are CsCl, NaCl, ZnS, NiAs, perovskite, spinel, corundum, beta tungsten, and graphite. This volume is comprised of 12 chapters and opens with an overview of crystallography and material properties, followed by a discussion on the structural relationships of elemental solids. The reader is then introduced to the ZnS, NiAs, CsCl, NaCl, graphite, perovskite, spinel, corundum, and beta tungsten type structures. The final chapter offers a brief summary of the structure of various types of inorganic compounds covered in the text. This book is written to meet the needs of teachers of advanced undergraduate and graduate courses and of researchers in the various disciplines that make up the field of materials sciences. It will also be of interest to those with diverse backgrounds such as engineering, chemistry, metallurgy, physics, ceramics, and mineralogy.

Microscopic Properties and Processes in Minerals

Microscopic Properties and Processes in Minerals PDF Author: Kate Wright
Publisher: Springer Science & Business Media
ISBN: 9780792359814
Category : Science
Languages : en
Pages : 670

Book Description
One of the major developments in Earth Sciences in general, and mineralogy in particular, has been the growth of our understanding of the microscopic behaviour of the complex materials that make up the Earth. This has been made possible by advances in our ability to probe minerals at the atomic level, over a large range of pressure and temperature conditions. New experimental techniques include the use of scanning probe microscopies to investigate mineral surfaces, as well as the use of neutron scattering, nuclear spectroscopies and synchrotron radiation to investigate the bonding and structure of minerals. In addition, there have been major developments in computational methods so that it is now possible to calculate the electronic structure of many rock forming materials. The aim of this volume is to give a coherent survey of the latest developments in experimental and theoretical approaches to the study of microscopic propertie~ and processes in minerals. Chapters in the book cover a number of key themes in the mineral sciences such as the behaviour of minerals at extremes of pressure and temperature, ordering in complex silicates, mechanisms of water incorporation in mantle phases, the importance of reactions occurring at the mineral surface, and the ability of computational methods to provide useful, qualitative information on the bulk and surface properties of minerals. The background to several experimental techniques is covered in some detail with examples of relevance to the issues cited above.

Optical Spectroscopy of Inorganic Solids

Optical Spectroscopy of Inorganic Solids PDF Author: B. Henderson
Publisher: Oxford University Press
ISBN: 9780199298624
Category : Science
Languages : en
Pages : 678

Book Description
This text describes the technique of optical spectroscopy applied to problems in condensed matter physics. It relates theoretical understanding to experimental measurement, including discussion of the optical spectroscopy of inorganic insulators, with many illustrative examples. Symmetry arguments are developed from a formal group theoretical basis and are frequently used, and a special effort is made to treat the subject of lattice vibrations and to show how these can affect the spectroscopic properties of solids. The elements of laser theory are developed, and the authors also explore the use of optically detected magnetic resonance techniques for the investigation of semiconducting materials.

Spectroscopy, Luminescence and Radiation Centers in Minerals

Spectroscopy, Luminescence and Radiation Centers in Minerals PDF Author: A.S. Marfunin
Publisher: Springer Science & Business Media
ISBN: 3642671128
Category : Science
Languages : en
Pages : 364

Book Description
The development of mineralogy, the evolutionary changes in compre hending the mineral substance of the earth are closely associated with the progress of research methods. Over a space of more than two and half centuries, from the goniometry of the mineral crystals to microscopic petrography and optical mineralogy, to crystal structure determinations, electron micros copy and electron diffraction and finally investigations into their electri cal, magnetic and mechanical properties, all this has led to the formation of the existing system of mineralogy, its notions, theories and to a proper description of minerals. However, no matter how great the variety of methods employed in mineralogy, they all come to a few aspects of substance characteristics. These are methods of determining the composition, structure and proper ties of the minerals. Thus the X-ray micro analyzer, the atom-absorption, neutron-activation, chromatographic and other analyses open up new opportunities for determining nothing else but the elementary com position of minerals.