STROKE: Analysis and Prediction Using Scikit-Learn, Keras, and TensorFlow with Python GUI PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download STROKE: Analysis and Prediction Using Scikit-Learn, Keras, and TensorFlow with Python GUI PDF full book. Access full book title STROKE: Analysis and Prediction Using Scikit-Learn, Keras, and TensorFlow with Python GUI by Vivian Siahaan. Download full books in PDF and EPUB format.

STROKE: Analysis and Prediction Using Scikit-Learn, Keras, and TensorFlow with Python GUI

STROKE: Analysis and Prediction Using Scikit-Learn, Keras, and TensorFlow with Python GUI PDF Author: Vivian Siahaan
Publisher: BALIGE PUBLISHING
ISBN:
Category : Computers
Languages : en
Pages : 359

Book Description
In this project, we will perform an analysis and prediction task on stroke data using machine learning and deep learning techniques. The entire process will be implemented with Python GUI for a user-friendly experience. We start by exploring the stroke dataset, which contains information about various factors related to individuals and their likelihood of experiencing a stroke. We load the dataset and examine its structure, features, and statistical summary. Next, we preprocess the data to ensure its suitability for training machine learning models. This involves handling missing values, encoding categorical variables, and scaling numerical features. We utilize techniques such as data imputation and label encoding. To gain insights from the data, we visualize its distribution and relationships between variables. We create plots such as histograms, scatter plots, and correlation matrices to understand the patterns and correlations in the data. To improve model performance and reduce dimensionality, we select the most relevant features for prediction. We employ techniques such as correlation analysis, feature importance ranking, and domain knowledge to identify the key predictors of stroke. Before training our models, we split the dataset into training and testing subsets. The training set will be used to train the models, while the testing set will evaluate their performance on unseen data. We construct several machine learning models to predict stroke. These models include Support Vector, Logistic Regression, K-Nearest Neighbors (KNN), Decision Tree, Random Forest, Gradient Boosting, Light Gradient Boosting, Naive Bayes, Adaboost, and XGBoost. Each model is built and trained using the training dataset. We train each model on the training dataset and evaluate its performance using appropriate metrics such as accuracy, precision, recall, and F1-score. This helps us assess how well the models can predict stroke based on the given features. To optimize the models' performance, we perform hyperparameter tuning using techniques like grid search or randomized search. This involves systematically exploring different combinations of hyperparameters to find the best configuration for each model. After training and tuning the models, we save them to disk using joblib. This allows us to reuse the trained models for future predictions without having to train them again. With the models trained and saved, we move on to implementing the Python GUI. We utilize PyQt libraries to create an interactive graphical user interface that provides a seamless user experience. The GUI consists of various components such as buttons, checkboxes, input fields, and plots. These components allow users to interact with the application, select prediction models, and visualize the results. In addition to the machine learning models, we also implement an ANN using TensorFlow. The ANN is trained on the preprocessed dataset, and its architecture consists of a dense layer with a sigmoid activation function. We train the ANN on the training dataset, monitoring its performance using metrics like loss and accuracy. We visualize the training progress by plotting the loss and accuracy curves over epochs. Once the ANN is trained, we save the model to disk using the h5 format. This allows us to load the trained ANN for future predictions. In the GUI, users have the option to choose the ANN as the prediction model. When selected, the ANN model is loaded from disk, and predictions are made on the testing dataset. The predicted labels are compared with the true labels for evaluation. To assess the accuracy of the ANN predictions, we calculate various evaluation metrics such as accuracy score, precision, recall, and classification report. These metrics provide insights into the ANN's performance in predicting stroke. We create plots to visualize the results of the ANN predictions. These plots include a comparison of the true values and predicted values, as well as a confusion matrix to analyze the classification accuracy. The training history of the ANN, including the loss and accuracy curves over epochs, is plotted and displayed in the GUI. This allows users to understand how the model's performance improved during training. In summary, this project covers the analysis and prediction of stroke using machine learning and deep learning models. It encompasses data exploration, preprocessing, model training, hyperparameter tuning, GUI implementation, ANN training, and prediction visualization. The Python GUI enhances the user experience by providing an interactive and intuitive platform for exploring and predicting stroke based on various features.

STROKE: Analysis and Prediction Using Scikit-Learn, Keras, and TensorFlow with Python GUI

STROKE: Analysis and Prediction Using Scikit-Learn, Keras, and TensorFlow with Python GUI PDF Author: Vivian Siahaan
Publisher: BALIGE PUBLISHING
ISBN:
Category : Computers
Languages : en
Pages : 359

Book Description
In this project, we will perform an analysis and prediction task on stroke data using machine learning and deep learning techniques. The entire process will be implemented with Python GUI for a user-friendly experience. We start by exploring the stroke dataset, which contains information about various factors related to individuals and their likelihood of experiencing a stroke. We load the dataset and examine its structure, features, and statistical summary. Next, we preprocess the data to ensure its suitability for training machine learning models. This involves handling missing values, encoding categorical variables, and scaling numerical features. We utilize techniques such as data imputation and label encoding. To gain insights from the data, we visualize its distribution and relationships between variables. We create plots such as histograms, scatter plots, and correlation matrices to understand the patterns and correlations in the data. To improve model performance and reduce dimensionality, we select the most relevant features for prediction. We employ techniques such as correlation analysis, feature importance ranking, and domain knowledge to identify the key predictors of stroke. Before training our models, we split the dataset into training and testing subsets. The training set will be used to train the models, while the testing set will evaluate their performance on unseen data. We construct several machine learning models to predict stroke. These models include Support Vector, Logistic Regression, K-Nearest Neighbors (KNN), Decision Tree, Random Forest, Gradient Boosting, Light Gradient Boosting, Naive Bayes, Adaboost, and XGBoost. Each model is built and trained using the training dataset. We train each model on the training dataset and evaluate its performance using appropriate metrics such as accuracy, precision, recall, and F1-score. This helps us assess how well the models can predict stroke based on the given features. To optimize the models' performance, we perform hyperparameter tuning using techniques like grid search or randomized search. This involves systematically exploring different combinations of hyperparameters to find the best configuration for each model. After training and tuning the models, we save them to disk using joblib. This allows us to reuse the trained models for future predictions without having to train them again. With the models trained and saved, we move on to implementing the Python GUI. We utilize PyQt libraries to create an interactive graphical user interface that provides a seamless user experience. The GUI consists of various components such as buttons, checkboxes, input fields, and plots. These components allow users to interact with the application, select prediction models, and visualize the results. In addition to the machine learning models, we also implement an ANN using TensorFlow. The ANN is trained on the preprocessed dataset, and its architecture consists of a dense layer with a sigmoid activation function. We train the ANN on the training dataset, monitoring its performance using metrics like loss and accuracy. We visualize the training progress by plotting the loss and accuracy curves over epochs. Once the ANN is trained, we save the model to disk using the h5 format. This allows us to load the trained ANN for future predictions. In the GUI, users have the option to choose the ANN as the prediction model. When selected, the ANN model is loaded from disk, and predictions are made on the testing dataset. The predicted labels are compared with the true labels for evaluation. To assess the accuracy of the ANN predictions, we calculate various evaluation metrics such as accuracy score, precision, recall, and classification report. These metrics provide insights into the ANN's performance in predicting stroke. We create plots to visualize the results of the ANN predictions. These plots include a comparison of the true values and predicted values, as well as a confusion matrix to analyze the classification accuracy. The training history of the ANN, including the loss and accuracy curves over epochs, is plotted and displayed in the GUI. This allows users to understand how the model's performance improved during training. In summary, this project covers the analysis and prediction of stroke using machine learning and deep learning models. It encompasses data exploration, preprocessing, model training, hyperparameter tuning, GUI implementation, ANN training, and prediction visualization. The Python GUI enhances the user experience by providing an interactive and intuitive platform for exploring and predicting stroke based on various features.

DATA SCIENCE WORKSHOP: Heart Failure Analysis and Prediction Using Scikit-Learn, Keras, and TensorFlow with Python GUI

DATA SCIENCE WORKSHOP: Heart Failure Analysis and Prediction Using Scikit-Learn, Keras, and TensorFlow with Python GUI PDF Author: Vivian Siahaan
Publisher: BALIGE PUBLISHING
ISBN:
Category : Computers
Languages : en
Pages : 398

Book Description
In this "Heart Failure Analysis and Prediction" data science workshop, we embarked on a comprehensive journey through the intricacies of cardiovascular health assessment using machine learning and deep learning techniques. Our journey began with an in-depth exploration of the dataset, where we meticulously studied its characteristics, dimensions, and underlying patterns. This initial step laid the foundation for our subsequent analyses. We delved into a detailed examination of the distribution of categorized features, meticulously dissecting variables such as age, sex, serum sodium levels, diabetes status, high blood pressure, smoking habits, and anemia. This critical insight enabled us to comprehend how these features relate to each other and potentially impact the occurrence of heart failure, providing valuable insights for subsequent modeling. Subsequently, we engaged in the heart of the project: predicting heart failure. Employing machine learning models, we harnessed the power of grid search to optimize model parameters, meticulously fine-tuning algorithms to achieve the best predictive performance. Through an array of models including Logistic Regression, KNeighbors Classifier, DecisionTrees Classifier, Random Forest Classifier, Gradient Boosting Classifier, XGB Classifier, LGBM Classifier, and MLP Classifier, we harnessed metrics like accuracy, precision, recall, and F1-score to meticulously evaluate each model's efficacy. Venturing further into the realm of deep learning, we embarked on an exploration of neural networks, striving to capture intricate patterns in the data. Our arsenal included diverse architectures such as Artificial Neural Networks (ANN), Long Short-Term Memory (LSTM) networks, Self Organizing Maps (SOMs), Recurrent Neural Networks (RNN), Deep Belief Networks (DBN), and Autoencoders. These architectures enabled us to unravel complex relationships within the data, yielding nuanced insights into the dynamics of heart failure prediction. Our approach to evaluating model performance was rigorous and thorough. By scrutinizing metrics such as accuracy, recall, precision, and F1-score, we gained a comprehensive understanding of the models' strengths and limitations. These metrics enabled us to make informed decisions about model selection and refinement, ensuring that our predictions were as accurate and reliable as possible. The evaluation phase emerges as a pivotal aspect, accentuated by an array of comprehensive metrics. Performance assessment encompasses metrics such as accuracy, precision, recall, F1-score, and ROC-AUC. Cross-validation and learning curves are strategically employed to mitigate overfitting and ensure model generalization. Furthermore, visual aids such as ROC curves and confusion matrices provide a lucid depiction of the models' interplay between sensitivity and specificity. Complementing our advanced analytical endeavors, we also embarked on the creation of a Python GUI using PyQt. This intuitive graphical interface provided an accessible platform for users to interact with the developed models and gain meaningful insights into heart health. The GUI streamlined the prediction process, making it user-friendly and facilitating the application of our intricate models to real-world scenarios. In conclusion, the "Heart Failure Analysis and Prediction" data science workshop was a journey through the realms of data exploration, feature distribution analysis, and the application of cutting-edge machine learning and deep learning techniques. By meticulously evaluating model performance, harnessing the capabilities of neural networks, and culminating in the creation of a user-friendly Python GUI, we armed participants with a comprehensive toolkit to analyze and predict heart failure with precision and innovation.

Data Science and Deep Learning Workshop For Scientists and Engineers

Data Science and Deep Learning Workshop For Scientists and Engineers PDF Author: Vivian Siahaan
Publisher: BALIGE PUBLISHING
ISBN:
Category : Computers
Languages : en
Pages : 1977

Book Description
WORKSHOP 1: In this workshop, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to implement deep learning on recognizing traffic signs using GTSRB dataset, detecting brain tumor using Brain Image MRI dataset, classifying gender, and recognizing facial expression using FER2013 dataset In Chapter 1, you will learn to create GUI applications to display line graph using PyQt. You will also learn how to display image and its histogram. In Chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, Pandas, NumPy and other libraries to perform prediction on handwritten digits using MNIST dataset with PyQt. You will build a GUI application for this purpose. In Chapter 3, you will learn how to perform recognizing traffic signs using GTSRB dataset from Kaggle. There are several different types of traffic signs like speed limits, no entry, traffic signals, turn left or right, children crossing, no passing of heavy vehicles, etc. Traffic signs classification is the process of identifying which class a traffic sign belongs to. In this Python project, you will build a deep neural network model that can classify traffic signs in image into different categories. With this model, you will be able to read and understand traffic signs which are a very important task for all autonomous vehicles. You will build a GUI application for this purpose. In Chapter 4, you will learn how to perform detecting brain tumor using Brain Image MRI dataset provided by Kaggle (https://www.kaggle.com/navoneel/brain-mri-images-for-brain-tumor-detection) using CNN model. You will build a GUI application for this purpose. In Chapter 5, you will learn how to perform classifying gender using dataset provided by Kaggle (https://www.kaggle.com/cashutosh/gender-classification-dataset) using MobileNetV2 and CNN models. You will build a GUI application for this purpose. In Chapter 6, you will learn how to perform recognizing facial expression using FER2013 dataset provided by Kaggle (https://www.kaggle.com/nicolejyt/facialexpressionrecognition) using CNN model. You will also build a GUI application for this purpose. WORKSHOP 2: In this workshop, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to implement deep learning on classifying fruits, classifying cats/dogs, detecting furnitures, and classifying fashion. In Chapter 1, you will learn to create GUI applications to display line graph using PyQt. You will also learn how to display image and its histogram. Then, you will learn how to use OpenCV, NumPy, and other libraries to perform feature extraction with Python GUI (PyQt). The feature detection techniques used in this chapter are Harris Corner Detection, Shi-Tomasi Corner Detector, and Scale-Invariant Feature Transform (SIFT). In Chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform classifying fruits using Fruits 360 dataset provided by Kaggle (https://www.kaggle.com/moltean/fruits/code) using Transfer Learning and CNN models. You will build a GUI application for this purpose. In Chapter 3, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform classifying cats/dogs using dataset provided by Kaggle (https://www.kaggle.com/chetankv/dogs-cats-images) using Using CNN with Data Generator. You will build a GUI application for this purpose. In Chapter 4, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform detecting furnitures using Furniture Detector dataset provided by Kaggle (https://www.kaggle.com/akkithetechie/furniture-detector) using VGG16 model. You will build a GUI application for this purpose. In Chapter 5, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform classifying fashion using Fashion MNIST dataset provided by Kaggle (https://www.kaggle.com/zalando-research/fashionmnist/code) using CNN model. You will build a GUI application for this purpose. WORKSHOP 3: In this workshop, you will implement deep learning on detecting vehicle license plates, recognizing sign language, and detecting surface crack using TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries. In Chapter 1, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform detecting vehicle license plates using Car License Plate Detection dataset provided by Kaggle (https://www.kaggle.com/andrewmvd/car-plate-detection/download). In Chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform sign language recognition using Sign Language Digits Dataset provided by Kaggle (https://www.kaggle.com/ardamavi/sign-language-digits-dataset/download). In Chapter 3, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform detecting surface crack using Surface Crack Detection provided by Kaggle (https://www.kaggle.com/arunrk7/surface-crack-detection/download). WORKSHOP 4: In this workshop, implement deep learning-based image classification on detecting face mask, classifying weather, and recognizing flower using TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries. In Chapter 1, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform detecting face mask using Face Mask Detection Dataset provided by Kaggle (https://www.kaggle.com/omkargurav/face-mask-dataset/download). In Chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform how to classify weather using Multi-class Weather Dataset provided by Kaggle (https://www.kaggle.com/pratik2901/multiclass-weather-dataset/download). WORKSHOP 5: In this workshop, implement deep learning-based image classification on classifying monkey species, recognizing rock, paper, and scissor, and classify airplane, car, and ship using TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries. In Chapter 1, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform how to classify monkey species using 10 Monkey Species dataset provided by Kaggle (https://www.kaggle.com/slothkong/10-monkey-species/download). In Chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform how to recognize rock, paper, and scissor using 10 Monkey Species dataset provided by Kaggle (https://www.kaggle.com/sanikamal/rock-paper-scissors-dataset/download). WORKSHOP 6: In this worksshop, you will implement two data science projects using Scikit-Learn, Scipy, and other libraries with Python GUI. In Chapter 1, you will learn how to use Scikit-Learn, Scipy, and other libraries to perform how to predict traffic (number of vehicles) in four different junctions using Traffic Prediction Dataset provided by Kaggle (https://www.kaggle.com/fedesoriano/traffic-prediction-dataset/download). This dataset contains 48.1k (48120) observations of the number of vehicles each hour in four different junctions: 1) DateTime; 2) Juction; 3) Vehicles; and 4) ID. In Chapter 2, you will learn how to use Scikit-Learn, NumPy, Pandas, and other libraries to perform how to analyze and predict heart attack using Heart Attack Analysis & Prediction Dataset provided by Kaggle (https://www.kaggle.com/rashikrahmanpritom/heart-attack-analysis-prediction-dataset/download). WORKSHOP 7: In this workshop, you will implement two data science projects using Scikit-Learn, Scipy, and other libraries with Python GUI. In Project 1, you will learn how to use Scikit-Learn, NumPy, Pandas, Seaborn, and other libraries to perform how to predict early stage diabetes using Early Stage Diabetes Risk Prediction Dataset provided by Kaggle (https://www.kaggle.com/ishandutta/early-stage-diabetes-risk-prediction-dataset/download). This dataset contains the sign and symptpom data of newly diabetic or would be diabetic patient. This has been collected using direct questionnaires from the patients of Sylhet Diabetes Hospital in Sylhet, Bangladesh and approved by a doctor. You will develop a GUI using PyQt5 to plot distribution of features, feature importance, cross validation score, and prediced values versus true values. The machine learning models used in this project are Adaboost, Random Forest, Gradient Boosting, Logistic Regression, and Support Vector Machine. In Project 2, you will learn how to use Scikit-Learn, NumPy, Pandas, and other libraries to perform how to analyze and predict breast cancer using Breast Cancer Prediction Dataset provided by Kaggle (https://www.kaggle.com/merishnasuwal/breast-cancer-prediction-dataset/download). Worldwide, breast cancer is the most common type of cancer in women and the second highest in terms of mortality rates.Diagnosis of breast cancer is performed when an abnormal lump is found (from self-examination or x-ray) or a tiny speck of calcium is seen (on an x-ray). After a suspicious lump is found, the doctor will conduct a diagnosis to determine whether it is cancerous and, if so, whether it has spread to other parts of the body. This breast cancer dataset was obtained from the University of Wisconsin Hospitals, Madison from Dr. William H. Wolberg. You will develop a GUI using PyQt5 to plot distribution of features, pairwise relationship, test scores, prediced values versus true values, confusion matrix, and decision boundary. The machine learning models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, and Support Vector Machine. WORKSHOP 8: In this workshop, you will learn how to use Scikit-Learn, TensorFlow, Keras, NumPy, Pandas, Seaborn, and other libraries to implement brain tumor classification and detection with machine learning using Brain Tumor dataset provided by Kaggle. This dataset contains five first order features: Mean (the contribution of individual pixel intensity for the entire image), Variance (used to find how each pixel varies from the neighboring pixel 0, Standard Deviation (the deviation of measured Values or the data from its mean), Skewness (measures of symmetry), and Kurtosis (describes the peak of e.g. a frequency distribution). It also contains eight second order features: Contrast, Energy, ASM (Angular second moment), Entropy, Homogeneity, Dissimilarity, Correlation, and Coarseness. The machine learning models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, and Support Vector Machine. The deep learning models used in this project are MobileNet and ResNet50. In this project, you will develop a GUI using PyQt5 to plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, training loss, and training accuracy. WORKSHOP 9: In this workshop, you will learn how to use Scikit-Learn, Keras, TensorFlow, NumPy, Pandas, Seaborn, and other libraries to perform COVID-19 Epitope Prediction using COVID-19/SARS B-cell Epitope Prediction dataset provided in Kaggle. All of three datasets consists of information of protein and peptide: parent_protein_id : parent protein ID; protein_seq : parent protein sequence; start_position : start position of peptide; end_position : end position of peptide; peptide_seq : peptide sequence; chou_fasman : peptide feature; emini : peptide feature, relative surface accessibility; kolaskar_tongaonkar : peptide feature, antigenicity; parker : peptide feature, hydrophobicity; isoelectric_point : protein feature; aromacity: protein feature; hydrophobicity : protein feature; stability : protein feature; and target : antibody valence (target value). The machine learning models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, Gradient Boosting, XGB classifier, and MLP classifier. Then, you will learn how to use sequential CNN and VGG16 models to detect and predict Covid-19 X-RAY using COVID-19 Xray Dataset (Train & Test Sets) provided in Kaggle. The folder itself consists of two subfolders: test and train. Finally, you will develop a GUI using PyQt5 to plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, training loss, and training accuracy. WORKSHOP 10: In this workshop, you will learn how to use Scikit-Learn, Keras, TensorFlow, NumPy, Pandas, Seaborn, and other libraries to perform analyzing and predicting stroke using dataset provided in Kaggle. The dataset consists of attribute information: id: unique identifier; gender: "Male", "Female" or "Other"; age: age of the patient; hypertension: 0 if the patient doesn't have hypertension, 1 if the patient has hypertension; heart_disease: 0 if the patient doesn't have any heart diseases, 1 if the patient has a heart disease; ever_married: "No" or "Yes"; work_type: "children", "Govt_jov", "Never_worked", "Private" or "Self-employed"; Residence_type: "Rural" or "Urban"; avg_glucose_level: average glucose level in blood; bmi: body mass index; smoking_status: "formerly smoked", "never smoked", "smokes" or "Unknown"; and stroke: 1 if the patient had a stroke or 0 if not. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will develop a GUI using PyQt5 to plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performace of the model, scalability of the model, training loss, and training accuracy. WORKSHOP 11: In this workshop, you will learn how to use Scikit-Learn, Keras, TensorFlow, NumPy, Pandas, Seaborn, and other libraries to perform classifying and predicting Hepatitis C using dataset provided by UCI Machine Learning Repository. All attributes in dataset except Category and Sex are numerical. Attributes 1 to 4 refer to the data of the patient: X (Patient ID/No.), Category (diagnosis) (values: '0=Blood Donor', '0s=suspect Blood Donor', '1=Hepatitis', '2=Fibrosis', '3=Cirrhosis'), Age (in years), Sex (f,m), ALB, ALP, ALT, AST, BIL, CHE, CHOL, CREA, GGT, and PROT. The target attribute for classification is Category (2): blood donors vs. Hepatitis C patients (including its progress ('just' Hepatitis C, Fibrosis, Cirrhosis). The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and ANN 1D. Finally, you will develop a GUI using PyQt5 to plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performace of the model, scalability of the model, training loss, and training accuracy.

In-Depth Tutorials: Deep Learning Using Scikit-Learn, Keras, and TensorFlow with Python GUI

In-Depth Tutorials: Deep Learning Using Scikit-Learn, Keras, and TensorFlow with Python GUI PDF Author: Vivian Siahaan
Publisher: BALIGE PUBLISHING
ISBN:
Category : Computers
Languages : en
Pages : 1459

Book Description
BOOK 1: LEARN FROM SCRATCH MACHINE LEARNING WITH PYTHON GUI In this book, you will learn how to use NumPy, Pandas, OpenCV, Scikit-Learn and other libraries to how to plot graph and to process digital image. Then, you will learn how to classify features using Perceptron, Adaline, Logistic Regression (LR), Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF), and K-Nearest Neighbor (KNN) models. You will also learn how to extract features using Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), Kernel Principal Component Analysis (KPCA) algorithms and use them in machine learning. In Chapter 1, you will learn: Tutorial Steps To Create A Simple GUI Application, Tutorial Steps to Use Radio Button, Tutorial Steps to Group Radio Buttons, Tutorial Steps to Use CheckBox Widget, Tutorial Steps to Use Two CheckBox Groups, Tutorial Steps to Understand Signals and Slots, Tutorial Steps to Convert Data Types, Tutorial Steps to Use Spin Box Widget, Tutorial Steps to Use ScrollBar and Slider, Tutorial Steps to Use List Widget, Tutorial Steps to Select Multiple List Items in One List Widget and Display It in Another List Widget, Tutorial Steps to Insert Item into List Widget, Tutorial Steps to Use Operations on Widget List, Tutorial Steps to Use Combo Box, Tutorial Steps to Use Calendar Widget and Date Edit, and Tutorial Steps to Use Table Widget. In Chapter 2, you will learn: Tutorial Steps To Create A Simple Line Graph, Tutorial Steps To Create A Simple Line Graph in Python GUI, Tutorial Steps To Create A Simple Line Graph in Python GUI: Part 2, Tutorial Steps To Create Two or More Graphs in the Same Axis, Tutorial Steps To Create Two Axes in One Canvas, Tutorial Steps To Use Two Widgets, Tutorial Steps To Use Two Widgets, Each of Which Has Two Axes, Tutorial Steps To Use Axes With Certain Opacity Levels, Tutorial Steps To Choose Line Color From Combo Box, Tutorial Steps To Calculate Fast Fourier Transform, Tutorial Steps To Create GUI For FFT, Tutorial Steps To Create GUI For FFT With Some Other Input Signals, Tutorial Steps To Create GUI For Noisy Signal, Tutorial Steps To Create GUI For Noisy Signal Filtering, and Tutorial Steps To Create GUI For Wav Signal Filtering. In Chapter 3, you will learn: Tutorial Steps To Convert RGB Image Into Grayscale, Tutorial Steps To Convert RGB Image Into YUV Image, Tutorial Steps To Convert RGB Image Into HSV Image, Tutorial Steps To Filter Image, Tutorial Steps To Display Image Histogram, Tutorial Steps To Display Filtered Image Histogram, Tutorial Steps To Filter Image With CheckBoxes, Tutorial Steps To Implement Image Thresholding, and Tutorial Steps To Implement Adaptive Image Thresholding. You will also learn: Tutorial Steps To Generate And Display Noisy Image, Tutorial Steps To Implement Edge Detection On Image, Tutorial Steps To Implement Image Segmentation Using Multiple Thresholding and K-Means Algorithm, Tutorial Steps To Implement Image Denoising, Tutorial Steps To Detect Face, Eye, and Mouth Using Haar Cascades, Tutorial Steps To Detect Face Using Haar Cascades with PyQt, Tutorial Steps To Detect Eye, and Mouth Using Haar Cascades with PyQt, Tutorial Steps To Extract Detected Objects, Tutorial Steps To Detect Image Features Using Harris Corner Detection, Tutorial Steps To Detect Image Features Using Shi-Tomasi Corner Detection, Tutorial Steps To Detect Features Using Scale-Invariant Feature Transform (SIFT), and Tutorial Steps To Detect Features Using Features from Accelerated Segment Test (FAST). In Chapter 4, In this tutorial, you will learn how to use Pandas, NumPy and other libraries to perform simple classification using perceptron and Adaline (adaptive linear neuron). The dataset used is Iris dataset directly from the UCI Machine Learning Repository. You will learn: Tutorial Steps To Implement Perceptron, Tutorial Steps To Implement Perceptron with PyQt, Tutorial Steps To Implement Adaline (ADAptive LInear NEuron), and Tutorial Steps To Implement Adaline with PyQt. In Chapter 5, you will learn how to use the scikit-learn machine learning library, which provides a wide variety of machine learning algorithms via a user-friendly Python API and to perform classification using perceptron, Adaline (adaptive linear neuron), and other models. The dataset used is Iris dataset directly from the UCI Machine Learning Repository. You will learn: Tutorial Steps To Implement Perceptron Using Scikit-Learn, Tutorial Steps To Implement Perceptron Using Scikit-Learn with PyQt, Tutorial Steps To Implement Logistic Regression Model, Tutorial Steps To Implement Logistic Regression Model with PyQt, Tutorial Steps To Implement Logistic Regression Model Using Scikit-Learn with PyQt, Tutorial Steps To Implement Support Vector Machine (SVM) Using Scikit-Learn, Tutorial Steps To Implement Decision Tree (DT) Using Scikit-Learn, Tutorial Steps To Implement Random Forest (RF) Using Scikit-Learn, and Tutorial Steps To Implement K-Nearest Neighbor (KNN) Using Scikit-Learn. In Chapter 6, you will learn how to use Pandas, NumPy, Scikit-Learn, and other libraries to implement different approaches for reducing the dimensionality of a dataset using different feature selection techniques. You will learn about three fundamental techniques that will help us to summarize the information content of a dataset by transforming it onto a new feature subspace of lower dimensionality than the original one. Data compression is an important topic in machine learning, and it helps us to store and analyze the increasing amounts of data that are produced and collected in the modern age of technology. You will learn the following topics: Principal Component Analysis (PCA) for unsupervised data compression, Linear Discriminant Analysis (LDA) as a supervised dimensionality reduction technique for maximizing class separability, Nonlinear dimensionality reduction via Kernel Principal Component Analysis (KPCA). You will learn: Tutorial Steps To Implement Principal Component Analysis (PCA), Tutorial Steps To Implement Principal Component Analysis (PCA) Using Scikit-Learn, Tutorial Steps To Implement Principal Component Analysis (PCA) Using Scikit-Learn with PyQt, Tutorial Steps To Implement Linear Discriminant Analysis (LDA), Tutorial Steps To Implement Linear Discriminant Analysis (LDA) with Scikit-Learn, Tutorial Steps To Implement Linear Discriminant Analysis (LDA) Using Scikit-Learn with PyQt, Tutorial Steps To Implement Kernel Principal Component Analysis (KPCA) Using Scikit-Learn, and Tutorial Steps To Implement Kernel Principal Component Analysis (KPCA) Using Scikit-Learn with PyQt. In Chapter 7, you will learn how to use Keras, Scikit-Learn, Pandas, NumPy and other libraries to perform prediction on handwritten digits using MNIST dataset. You will learn: Tutorial Steps To Load MNIST Dataset, Tutorial Steps To Load MNIST Dataset with PyQt, Tutorial Steps To Implement Perceptron With PCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Perceptron With LDA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Perceptron With KPCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Logistic Regression (LR) Model With PCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Logistic Regression (LR) Model With LDA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Logistic Regression (LR) Model With KPCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement , Tutorial Steps To Implement Support Vector Machine (SVM) Model With LDA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Support Vector Machine (SVM) Model With KPCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Decision Tree (DT) Model With PCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Decision Tree (DT) Model With LDA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Decision Tree (DT) Model With KPCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Random Forest (RF) Model With PCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Random Forest (RF) Model With LDA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement Random Forest (RF) Model With KPCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement K-Nearest Neighbor (KNN) Model With PCA Feature Extractor on MNIST Dataset Using PyQt, Tutorial Steps To Implement K-Nearest Neighbor (KNN) Model With LDA Feature Extractor on MNIST Dataset Using PyQt, and Tutorial Steps To Implement K-Nearest Neighbor (KNN) Model With KPCA Feature Extractor on MNIST Dataset Using PyQt. BOOK 2: THE PRACTICAL GUIDES ON DEEP LEARNING USING SCIKIT-LEARN, KERAS, AND TENSORFLOW WITH PYTHON GUI In this book, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to implement deep learning on recognizing traffic signs using GTSRB dataset, detecting brain tumor using Brain Image MRI dataset, classifying gender, and recognizing facial expression using FER2013 dataset In Chapter 1, you will learn to create GUI applications to display line graph using PyQt. You will also learn how to display image and its histogram. In Chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, Pandas, NumPy and other libraries to perform prediction on handwritten digits using MNIST dataset with PyQt. You will build a GUI application for this purpose. In Chapter 3, you will learn how to perform recognizing traffic signs using GTSRB dataset from Kaggle. There are several different types of traffic signs like speed limits, no entry, traffic signals, turn left or right, children crossing, no passing of heavy vehicles, etc. Traffic signs classification is the process of identifying which class a traffic sign belongs to. In this Python project, you will build a deep neural network model that can classify traffic signs in image into different categories. With this model, you will be able to read and understand traffic signs which are a very important task for all autonomous vehicles. You will build a GUI application for this purpose. In Chapter 4, you will learn how to perform detecting brain tumor using Brain Image MRI dataset provided by Kaggle (https://www.kaggle.com/navoneel/brain-mri-images-for-brain-tumor-detection) using CNN model. You will build a GUI application for this purpose. In Chapter 5, you will learn how to perform classifying gender using dataset provided by Kaggle (https://www.kaggle.com/cashutosh/gender-classification-dataset) using MobileNetV2 and CNN models. You will build a GUI application for this purpose. In Chapter 6, you will learn how to perform recognizing facial expression using FER2013 dataset provided by Kaggle (https://www.kaggle.com/nicolejyt/facialexpressionrecognition) using CNN model. You will also build a GUI application for this purpose. BOOK 3: STEP BY STEP TUTORIALS ON DEEP LEARNING USING SCIKIT-LEARN, KERAS, AND TENSORFLOW WITH PYTHON GUI In this book, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to implement deep learning on classifying fruits, classifying cats/dogs, detecting furnitures, and classifying fashion. In Chapter 1, you will learn to create GUI applications to display line graph using PyQt. You will also learn how to display image and its histogram. Then, you will learn how to use OpenCV, NumPy, and other libraries to perform feature extraction with Python GUI (PyQt). The feature detection techniques used in this chapter are Harris Corner Detection, Shi-Tomasi Corner Detector, and Scale-Invariant Feature Transform (SIFT). In Chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform classifying fruits using Fruits 360 dataset provided by Kaggle (https://www.kaggle.com/moltean/fruits/code) using Transfer Learning and CNN models. You will build a GUI application for this purpose. In Chapter 3, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform classifying cats/dogs using dataset provided by Kaggle (https://www.kaggle.com/chetankv/dogs-cats-images) using Using CNN with Data Generator. You will build a GUI application for this purpose. In Chapter 4, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform detecting furnitures using Furniture Detector dataset provided by Kaggle (https://www.kaggle.com/akkithetechie/furniture-detector) using VGG16 model. You will build a GUI application for this purpose. In Chapter 5, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform classifying fashion using Fashion MNIST dataset provided by Kaggle (https://www.kaggle.com/zalando-research/fashionmnist/code) using CNN model. You will build a GUI application for this purpose. BOOK 4: Project-Based Approach On DEEP LEARNING Using Scikit-Learn, Keras, And TensorFlow with Python GUI In this book, implement deep learning on detecting vehicle license plates, recognizing sign language, and detecting surface crack using TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries. In Chapter 1, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform detecting vehicle license plates using Car License Plate Detection dataset provided by Kaggle (https://www.kaggle.com/andrewmvd/car-plate-detection/download). In Chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform sign language recognition using Sign Language Digits Dataset provided by Kaggle (https://www.kaggle.com/ardamavi/sign-language-digits-dataset/download). In Chapter 3, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform detecting surface crack using Surface Crack Detection provided by Kaggle (https://www.kaggle.com/arunrk7/surface-crack-detection/download). BOOK 5: Hands-On Guide To IMAGE CLASSIFICATION Using Scikit-Learn, Keras, And TensorFlow with PYTHON GUI In this book, implement deep learning-based image classification on detecting face mask, classifying weather, and recognizing flower using TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries. In Chapter 1, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform detecting face mask using Face Mask Detection Dataset provided by Kaggle (https://www.kaggle.com/omkargurav/face-mask-dataset/download). In Chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform how to classify weather using Multi-class Weather Dataset provided by Kaggle (https://www.kaggle.com/pratik2901/multiclass-weather-dataset/download). In Chapter 3, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform how to recognize flower using Flowers Recognition dataset provided by Kaggle (https://www.kaggle.com/alxmamaev/flowers-recognition/download). BOOK 6: Step by Step Tutorial IMAGE CLASSIFICATION Using Scikit-Learn, Keras, And TensorFlow with PYTHON GUI In this book, implement deep learning-based image classification on classifying monkey species, recognizing rock, paper, and scissor, and classify airplane, car, and ship using TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries. In Chapter 1, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform how to classify monkey species using 10 Monkey Species dataset provided by Kaggle (https://www.kaggle.com/slothkong/10-monkey-species/download). In Chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform how to recognize rock, paper, and scissor using 10 Monkey Species dataset provided by Kaggle (https://www.kaggle.com/sanikamal/rock-paper-scissors-dataset/download). In Chapter 3, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform how to classify airplane, car, and ship using Multiclass-image-dataset-airplane-car-ship dataset provided by Kaggle (https://www.kaggle.com/abtabm/multiclassimagedatasetairplanecar).

Step by Step Tutorials on Deep Learning Using Scikit-Learn, Keras, and Tensorflow with Python GUI

Step by Step Tutorials on Deep Learning Using Scikit-Learn, Keras, and Tensorflow with Python GUI PDF Author: Rismon Hasiholan Sianipar
Publisher: Independently Published
ISBN:
Category :
Languages : en
Pages : 228

Book Description
In this book, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to implement deep learning on classifying fruits, classifying cats/dogs, detecting furnitures, and classifying fashion.In Chapter 1, you will learn to create GUI applications to display line graph using PyQt. You will also learn how to display image and its histogram. Then, you will learn how to use OpenCV, NumPy, and other libraries to perform feature extraction with Python GUI (PyQt). The feature detection techniques used in this chapter are Harris Corner Detection, Shi-Tomasi Corner Detector, and Scale-Invariant Feature Transform (SIFT).In Chapter 2, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform classifying fruits using Fruits 360 dataset provided by Kaggle (https: //www.kaggle.com/moltean/fruits/code) using Transfer Learning and CNN models. You will build a GUI application for this purpose.In Chapter 3, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform classifying cats/dogs using dataset provided by Kaggle (https: //www.kaggle.com/chetankv/dogs-cats-images) using Using CNN with Data Generator. You will build a GUI application for this purpose.In Chapter 4, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform detecting furnitures using Furniture Detector dataset provided by Kaggle (https: //www.kaggle.com/akkithetechie/furniture-detector) using VGG16 model. You will build a GUI application for this purpose.In Chapter 5, you will learn how to use TensorFlow, Keras, Scikit-Learn, OpenCV, Pandas, NumPy and other libraries to perform classifying fashion using Fashion MNIST dataset provided by Kaggle (https: //www.kaggle.com/zalando-research/fashionmnist/code) using CNN model. You will build a GUI application for this purp

COVID-19: Analysis, Classification, and Detection Using Scikit-Learn, Keras, and TensorFlow with Python GUI

COVID-19: Analysis, Classification, and Detection Using Scikit-Learn, Keras, and TensorFlow with Python GUI PDF Author: Vivian Siahaan
Publisher: BALIGE PUBLISHING
ISBN:
Category : Computers
Languages : en
Pages : 286

Book Description
In this comprehensive project, "COVID-19: Analysis, Classification, and Detection Using Scikit-Learn, Keras, and TensorFlow with Python GUI," the primary objective is to leverage various machine learning and deep learning techniques to analyze and classify COVID-19 cases based on numerical data and medical image data. The project begins by exploring the dataset, gaining insights into its structure and content. This initial data exploration aids in understanding the distribution of categorized features, providing valuable context for subsequent analysis. With insights gained from data exploration, the project delves into predictive modeling using machine learning. It employs Scikit-Learn to build and fine-tune predictive models, harnessing grid search for hyperparameter optimization. This meticulous process ensures that the machine learning models, such as Naïve Bayes, K-Nearest Neighbors, Decision Trees, Random Forests, Gradient Boosting, Extreme Gradient Boosting, Multi-Layer Perceptron, AdaBoost, and Logistic Regression, are optimized to accurately predict the risk of COVID-19 based on the input features. Transitioning to the realm of deep learning, the project employs Convolutional Neural Networks (CNNs) to perform intricate image classification tasks. Leveraging Keras and TensorFlow, the CNN architecture is meticulously crafted, comprising convolutional and pooling layers, dropout regularization, and dense layers. The project also extends its deep learning capabilities by utilizing the VGG16 pre-trained model, harnessing its powerful feature extraction capabilities for COVID-19 image classification. To gauge the effectiveness of the trained models, an array of performance metrics is utilized. In this project, a range of metrics are used to evaluate the performance of machine learning and deep learning models employed for COVID-19 classification. These metrics include Accuracy, which measures the overall correctness of predictions; Precision, emphasizing the accuracy of positive predictions; Recall (Sensitivity), assessing the model's ability to identify positive instances; and F1-Score, a balanced measure of accuracy. The Mean Squared Error (MSE) quantifies the magnitude of errors in regression tasks, while the Confusion Matrix summarizes classification results by showing counts of true positives, true negatives, false positives, and false negatives. These metrics together provide a comprehensive understanding of model performance. They help gauge the model's accuracy, the balance between precision and recall, and its proficiency in classifying both positive and negative instances. In the medical context of COVID-19 classification, these metrics play a vital role in evaluating the models' reliability and effectiveness in real-world applications. The project further enriches its analytical capabilities by developing an interactive Python GUI. This graphical user interface streamlines the user experience, facilitating data input, model training, and prediction. Users are empowered to input medical images for classification, leveraging the trained machine learning and deep learning models to assess COVID-19 risk. The culmination of the project lies in the accurate prediction of COVID-19 risk through a combined approach of machine learning and deep learning techniques. The Python GUI using PyQt5 provides a user-friendly platform for clinicians and researchers to interact with the models, fostering informed decision-making based on reliable and data-driven predictions. In conclusion, this project represents a comprehensive endeavor to harness the power of machine learning and deep learning for the vital task of COVID-19 classification. Through rigorous data exploration, model training, and performance evaluation, the project yields a robust framework for risk prediction, contributing to the broader efforts to combat the ongoing pandemic.

The Applied Data Science Workshop On Medical Datasets Using Machine Learning and Deep Learning with Python GUI

The Applied Data Science Workshop On Medical Datasets Using Machine Learning and Deep Learning with Python GUI PDF Author: Vivian Siahaan
Publisher: BALIGE PUBLISHING
ISBN:
Category : Computers
Languages : en
Pages : 1574

Book Description
Workshop 1: Heart Failure Analysis and Prediction Using Scikit-Learn, Keras, and TensorFlow with Python GUI Cardiovascular diseases (CVDs) are the number 1 cause of death globally taking an estimated 17.9 million lives each year, which accounts for 31% of all deaths worldwide. Heart failure is a common event caused by CVDs and this dataset contains 12 features that can be used to predict mortality by heart failure. People with cardiovascular disease or who are at high cardiovascular risk (due to the presence of one or more risk factors such as hypertension, diabetes, hyperlipidaemia or already established disease) need early detection and management wherein a machine learning models can be of great help. Dataset used in this project is from Davide Chicco, Giuseppe Jurman. Machine learning can predict survival of patients with heart failure from serum creatinine and ejection fraction alone. BMC Medical Informatics and Decision Making 20, 16 (2020). Attribute information in the dataset are as follows: age: Age; anaemia: Decrease of red blood cells or hemoglobin (boolean); creatinine_phosphokinase: Level of the CPK enzyme in the blood (mcg/L); diabetes: If the patient has diabetes (boolean); ejection_fraction: Percentage of blood leaving the heart at each contraction (percentage); high_blood_pressure: If the patient has hypertension (boolean); platelets: Platelets in the blood (kiloplatelets/mL); serum_creatinine: Level of serum creatinine in the blood (mg/dL); serum_sodium: Level of serum sodium in the blood (mEq/L); sex: Woman or man (binary); smoking: If the patient smokes or not (boolean); time: Follow-up period (days); and DEATH_EVENT: If the patient deceased during the follow-up period (boolean). The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will develop a GUI using PyQt5 to plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performace of the model, scalability of the model, training loss, and training accuracy. WORKSHOP 2: Cervical Cancer Classification and Prediction Using Machine Learning and Deep Learning with Python GUI About 11,000 new cases of invasive cervical cancer are diagnosed each year in the U.S. However, the number of new cervical cancer cases has been declining steadily over the past decades. Although it is the most preventable type of cancer, each year cervical cancer kills about 4,000 women in the U.S. and about 300,000 women worldwide. Numerous studies report that high poverty levels are linked with low screening rates. In addition, lack of health insurance, limited transportation, and language difficulties hinder a poor woman’s access to screening services. Human papilloma virus (HPV) is the main risk factor for cervical cancer. In adults, the most important risk factor for HPV is sexual activity with an infected person. Women most at risk for cervical cancer are those with a history of multiple sexual partners, sexual intercourse at age 17 years or younger, or both. A woman who has never been sexually active has a very low risk for developing cervical cancer. Sexual activity with multiple partners increases the likelihood of many other sexually transmitted infections (chlamydia, gonorrhea, syphilis). Studies have found an association between chlamydia and cervical cancer risk, including the possibility that chlamydia may prolong HPV infection. Therefore, early detection of cervical cancer using machine and deep learning models can be of great help. The dataset used in this project is obtained from UCI Repository and kindly acknowledged. This file contains a List of Risk Factors for Cervical Cancer leading to a Biopsy Examination. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will develop a GUI using PyQt5 to plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performace of the model, scalability of the model, training loss, and training accuracy. WORKSHOP 3: Chronic Kidney Disease Classification and Prediction Using Machine Learning and Deep Learning with Python GUI Chronic kidney disease is the longstanding disease of the kidneys leading to renal failure. The kidneys filter waste and excess fluid from the blood. As kidneys fail, waste builds up. Symptoms develop slowly and aren't specific to the disease. Some people have no symptoms at all and are diagnosed by a lab test. Medication helps manage symptoms. In later stages, filtering the blood with a machine (dialysis) or a transplant may be required The dataset used in this project was taken over a 2-month period in India with 25 features (eg, red blood cell count, white blood cell count, etc). The target is the 'classification', which is either 'ckd' or 'notckd' - ckd=chronic kidney disease. It contains measures of 24 features for 400 people. Quite a lot of features for just 400 samples. There are 14 categorical features, while 10 are numerical. The dataset needs cleaning: in that it has NaNs and the numeric features need to be forced to floats. Attribute Information: Age(numerical) age in years; Blood Pressure(numerical) bp in mm/Hg; Specific Gravity(categorical) sg - (1.005,1.010,1.015,1.020,1.025); Albumin(categorical) al - (0,1,2,3,4,5); Sugar(categorical) su - (0,1,2,3,4,5); Red Blood Cells(categorical) rbc - (normal,abnormal); Pus Cell (categorical) pc - (normal,abnormal); Pus Cell clumps(categorical) pcc - (present, notpresent); Bacteria(categorical) ba - (present,notpresent); Blood Glucose Random(numerical) bgr in mgs/dl; Blood Urea(numerical) bu in mgs/dl; Serum Creatinine(numerical) sc in mgs/dl; Sodium(numerical) sod in mEq/L; Potassium(numerical) pot in mEq/L; Hemoglobin(numerical) hemo in gms; Packed Cell Volume(numerical); White Blood Cell Count(numerical) wc in cells/cumm; Red Blood Cell Count(numerical) rc in millions/cmm; Hypertension(categorical) htn - (yes,no); Diabetes Mellitus(categorical) dm - (yes,no); Coronary Artery Disease(categorical) cad - (yes,no); Appetite(categorical) appet - (good,poor); Pedal Edema(categorical) pe - (yes,no); Anemia(categorical) ane - (yes,no); and Class (categorical) class - (ckd,notckd). The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will develop a GUI using PyQt5 to plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performace of the model, scalability of the model, training loss, and training accuracy. WORKSHOP 4: Lung Cancer Classification and Prediction Using Machine Learning and Deep Learning with Python GUI The effectiveness of cancer prediction system helps the people to know their cancer risk with low cost and it also helps the people to take the appropriate decision based on their cancer risk status. The data is collected from the website online lung cancer prediction system. Total number of attributes in the dataset is 16, while number of instances is 309. Following are attribute information of dataset: Gender: M(male), F(female); Age: Age of the patient; Smoking: YES=2 , NO=1; Yellow fingers: YES=2 , NO=1; Anxiety: YES=2 , NO=1; Peer_pressure: YES=2 , NO=1; Chronic Disease: YES=2 , NO=1; Fatigue: YES=2 , NO=1; Allergy: YES=2 , NO=1; Wheezing: YES=2 , NO=1; Alcohol: YES=2 , NO=1; Coughing: YES=2 , NO=1; Shortness of Breath: YES=2 , NO=1; Swallowing Difficulty: YES=2 , NO=1; Chest pain: YES=2 , NO=1; and Lung Cancer: YES , NO. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will develop a GUI using PyQt5 to plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performace of the model, scalability of the model, training loss, and training accuracy. WORKSHOP 5: Alzheimer’s Disease Classification and Prediction Using Machine Learning and Deep Learning with Python GUI Alzheimer's is a type of dementia that causes problems with memory, thinking and behavior. Symptoms usually develop slowly and get worse over time, becoming severe enough to interfere with daily tasks. Alzheimer's is not a normal part of aging. The greatest known risk factor is increasing age, and the majority of people with Alzheimer's are 65 and older. But Alzheimer's is not just a disease of old age. Approximately 200,000 Americans under the age of 65 have younger-onset Alzheimer’s disease (also known as early-onset Alzheimer’s). The dataset consists of a longitudinal MRI data of 374 subjects aged 60 to 96. Each subject was scanned at least once. Everyone is right-handed. 206 of the subjects were grouped as 'Nondemented' throughout the study. 107 of the subjects were grouped as 'Demented' at the time of their initial visits and remained so throughout the study. 14 subjects were grouped as 'Nondemented' at the time of their initial visit and were subsequently characterized as 'Demented' at a later visit. These fall under the 'Converted' category. Following are some important features in the dataset: EDUC:Years of Education; SES: Socioeconomic Status; MMSE: Mini Mental State Examination; CDR: Clinical Dementia Rating; eTIV: Estimated Total Intracranial Volume; nWBV: Normalize Whole Brain Volume; and ASF: Atlas Scaling Factor. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will develop a GUI using PyQt5 to plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. WORKSHOP 6: Parkinson Classification and Prediction Using Machine Learning and Deep Learning with Python GUI The dataset was created by Max Little of the University of Oxford, in collaboration with the National Centre for Voice and Speech, Denver, Colorado, who recorded the speech signals. The original study published the feature extraction methods for general voice disorders. This dataset is composed of a range of biomedical voice measurements from 31 people, 23 with Parkinson's disease (PD). Each column in the table is a particular voice measure, and each row corresponds one of 195 voice recording from these individuals ("name" column). The main aim of the data is to discriminate healthy people from those with PD, according to "status" column which is set to 0 for healthy and 1 for PD. The data is in ASCII CSV format. The rows of the CSV file contain an instance corresponding to one voice recording. There are around six recordings per patient, the name of the patient is identified in the first column. Attribute information of this dataset are as follows: name - ASCII subject name and recording number; MDVP:Fo(Hz) - Average vocal fundamental frequency; MDVP:Fhi(Hz) - Maximum vocal fundamental frequency; MDVP:Flo(Hz) - Minimum vocal fundamental frequency; MDVP:Jitter(%); MDVP:Jitter(Abs); MDVP:RAP; MDVP:PPQ; Jitter:DDP – Several measures of variation in fundamental frequency; MDVP:Shimmer; MDVP:Shimmer(dB); Shimmer:APQ3; Shimmer:APQ5; MDVP:APQ; Shimmer:DDA - Several measures of variation in amplitude; NHR; HNR - Two measures of ratio of noise to tonal components in the voice; status - Health status of the subject (one) - Parkinson's, (zero) – healthy; RPDE,D2 - Two nonlinear dynamical complexity measures; DFA - Signal fractal scaling exponent; and spread1,spread2,PPE - Three nonlinear measures of fundamental frequency variation. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will develop a GUI using PyQt5 to plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. WORKSHOP 7: Liver Disease Classification and Prediction Using Machine Learning and Deep Learning with Python GUI Patients with Liver disease have been continuously increasing because of excessive consumption of alcohol, inhale of harmful gases, intake of contaminated food, pickles and drugs. This dataset was used to evaluate prediction algorithms in an effort to reduce burden on doctors. This dataset contains 416 liver patient records and 167 non liver patient records collected from North East of Andhra Pradesh, India. The "Dataset" column is a class label used to divide groups into liver patient (liver disease) or not (no disease). This data set contains 441 male patient records and 142 female patient records. Any patient whose age exceeded 89 is listed as being of age "90". Columns in the dataset: Age of the patient; Gender of the patient; Total Bilirubin; Direct Bilirubin; Alkaline Phosphotase; Alamine Aminotransferase; Aspartate Aminotransferase; Total Protiens; Albumin; Albumin and Globulin Ratio; and Dataset: field used to split the data into two sets (patient with liver disease, or no disease). The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will develop a GUI using PyQt5 to plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy.

HEPATITIS C: Classification and Prediction Using Scikit-Learn, Keras, and TensorFlow with Python GUI

HEPATITIS C: Classification and Prediction Using Scikit-Learn, Keras, and TensorFlow with Python GUI PDF Author: Vivian Siahaan
Publisher: BALIGE PUBLISHING
ISBN:
Category : Computers
Languages : en
Pages : 319

Book Description
In this comprehensive project focusing on Hepatitis C classification and prediction, the journey begins with a meticulous exploration of the dataset. Through Python, Scikit-Learn, Keras, and TensorFlow, the project aims to develop an effective model to predict Hepatitis C based on given features. The dataset's attributes are systematically examined, and their distributions are analyzed to uncover insights into potential correlations and patterns. The subsequent step involves categorizing the feature distributions. This phase sheds light on the underlying characteristics of each attribute, facilitating the understanding of their roles in influencing the target variable. This categorization lays the foundation for feature scaling and preprocessing, ensuring that the data is optimized for machine learning. The core of the project revolves around the development of machine learning models. Employing Scikit-Learn, various classification algorithms are applied, including K-Nearest Neighbors (KNN), Decision Trees, Random Forests, Naive Bayes, Gradient Boosting, AdaBoost, Light Gradient Boosting, Multi-Layer Perceptron, and XGBoost. The models are fine-tuned using Grid Search to optimize hyperparameters, enhancing their performance and generalization capability. Taking the project a step further, deep learning techniques are harnessed to tackle the Hepatitis C classification challenge. A key component is the construction of an Artificial Neural Network (ANN) using Keras and TensorFlow. This ANN leverages layers of interconnected nodes to learn complex patterns within the data. LSTM, FNN, RNN, DBN, and Autoencoders are also explored, offering a comprehensive understanding of deep learning's versatility. To evaluate the models' performances, an array of metrics are meticulously employed. Metrics such as accuracy, precision, recall, F1-score, and AUC-ROC are meticulously calculated. The significance of each metric is meticulously explained, underpinning the assessment of a model's true predictive power and its potential weaknesses. The evaluation phase emerges as a pivotal aspect, accentuated by an array of comprehensive metrics. Performance assessment encompasses metrics such as accuracy, precision, recall, F1-score, and ROC-AUC. Cross-validation and learning curves are strategically employed to mitigate overfitting and ensure model generalization. Furthermore, visual aids such as ROC curves and confusion matrices provide a lucid depiction of the models' interplay between sensitivity and specificity. The culmination of the project involves the creation of a user-friendly Graphical User Interface (GUI) using PyQt. The GUI enables users to interact seamlessly with the models, facilitating data input, model selection, and prediction execution. A detailed description of the GUI's components, including buttons, checkboxes, and interactive plots, highlights its role in simplifying the entire classification process. In a comprehensive journey of exploration, experimentation, and analysis, this project effectively marries data science and machine learning. By thoroughly examining the dataset, engineering features, utilizing a diverse range of machine learning models, harnessing the capabilities of deep learning, evaluating performance metrics, and creating an intuitive GUI, the project encapsulates the multi-faceted nature of modern data-driven endeavors.

BRAIN TUMOR: Analysis, Classification, and Detection Using Machine Learning and Deep Learning with Python GUI

BRAIN TUMOR: Analysis, Classification, and Detection Using Machine Learning and Deep Learning with Python GUI PDF Author: Vivian Siahaan
Publisher: BALIGE PUBLISHING
ISBN:
Category : Computers
Languages : en
Pages : 332

Book Description
In this book, you will learn how to use Scikit-Learn, TensorFlow, Keras, NumPy, Pandas, Seaborn, and other libraries to implement brain tumor classification and detection with machine learning using Brain Tumor dataset provided by Kaggle. this dataset contains five first order features: Mean (the contribution of individual pixel intensity for the entire image), Variance (used to find how each pixel varies from the neighboring pixel 0, Standard Deviation (the deviation of measured Values or the data from its mean), Skewness (measures of symmetry), and Kurtosis (describes the peak of e.g. a frequency distribution). it also contains eight second order features: Contrast, Energy, ASM (Angular second moment), Entropy, Homogeneity, Dissimilarity, Correlation, and Coarseness. In this project, various methods and functionalities related to machine learning and deep learning are covered. Here is a summary of the process: Data Preprocessing: Loaded and preprocessed the dataset using various techniques such as feature scaling, encoding categorical variables, and splitting the dataset into training and testing sets.; Feature Selection: Implemented feature selection techniques such as SelectKBest, Recursive Feature Elimination, and Principal Component Analysis to select the most relevant features for the model.; Model Training and Evaluation: Trained and evaluated multiple machine learning models such as Random Forest, AdaBoost, Gradient Boosting, Logistic Regression, and Support Vector Machines using cross-validation and hyperparameter tuning. Implemented ensemble methods like Voting Classifier and Stacking Classifier to combine the predictions of multiple models. Calculated evaluation metrics such as accuracy, precision, recall, F1-score, and mean squared error for each model. Visualized the predictions and confusion matrix for the models using plotting techniques.; Deep Learning Model Building and Training: Built deep learning models using architectures such as MobileNet and ResNet50 for image classification tasks. Compiled and trained the models using appropriate loss functions, optimizers, and metrics. Saved the trained models and their training history for future use.; Visualization and Interaction: Implemented methods to plot the training loss and accuracy curves during model training. Created interactive widgets for displaying prediction results and confusion matrices. Linked the selection of prediction options in combo boxes to trigger the corresponding prediction and visualization functions.; Throughout the process, various libraries and frameworks such as scikit-learn, TensorFlow, and Keras are used to perform the tasks efficiently. The overall goal was to train models, evaluate their performance, visualize the results, and provide an interactive experience for the user to explore different prediction options.

Deep Learning with Python

Deep Learning with Python PDF Author: Francois Chollet
Publisher: Simon and Schuster
ISBN: 1638352046
Category : Computers
Languages : en
Pages : 597

Book Description
Summary Deep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. Written by Keras creator and Google AI researcher François Chollet, this book builds your understanding through intuitive explanations and practical examples. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Machine learning has made remarkable progress in recent years. We went from near-unusable speech and image recognition, to near-human accuracy. We went from machines that couldn't beat a serious Go player, to defeating a world champion. Behind this progress is deep learning—a combination of engineering advances, best practices, and theory that enables a wealth of previously impossible smart applications. About the Book Deep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. Written by Keras creator and Google AI researcher François Chollet, this book builds your understanding through intuitive explanations and practical examples. You'll explore challenging concepts and practice with applications in computer vision, natural-language processing, and generative models. By the time you finish, you'll have the knowledge and hands-on skills to apply deep learning in your own projects. What's Inside Deep learning from first principles Setting up your own deep-learning environment Image-classification models Deep learning for text and sequences Neural style transfer, text generation, and image generation About the Reader Readers need intermediate Python skills. No previous experience with Keras, TensorFlow, or machine learning is required. About the Author François Chollet works on deep learning at Google in Mountain View, CA. He is the creator of the Keras deep-learning library, as well as a contributor to the TensorFlow machine-learning framework. He also does deep-learning research, with a focus on computer vision and the application of machine learning to formal reasoning. His papers have been published at major conferences in the field, including the Conference on Computer Vision and Pattern Recognition (CVPR), the Conference and Workshop on Neural Information Processing Systems (NIPS), the International Conference on Learning Representations (ICLR), and others. Table of Contents PART 1 - FUNDAMENTALS OF DEEP LEARNING What is deep learning? Before we begin: the mathematical building blocks of neural networks Getting started with neural networks Fundamentals of machine learning PART 2 - DEEP LEARNING IN PRACTICE Deep learning for computer vision Deep learning for text and sequences Advanced deep-learning best practices Generative deep learning Conclusions appendix A - Installing Keras and its dependencies on Ubuntu appendix B - Running Jupyter notebooks on an EC2 GPU instance