Using R for Numerical Analysis in Science and Engineering PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Using R for Numerical Analysis in Science and Engineering PDF full book. Access full book title Using R for Numerical Analysis in Science and Engineering by Victor A. Bloomfield. Download full books in PDF and EPUB format.

Using R for Numerical Analysis in Science and Engineering

Using R for Numerical Analysis in Science and Engineering PDF Author: Victor A. Bloomfield
Publisher: CRC Press
ISBN: 1315360497
Category : Mathematics
Languages : en
Pages : 362

Book Description
Instead of presenting the standard theoretical treatments that underlie the various numerical methods used by scientists and engineers, Using R for Numerical Analysis in Science and Engineering shows how to use R and its add-on packages to obtain numerical solutions to the complex mathematical problems commonly faced by scientists and engineers. This practical guide to the capabilities of R demonstrates Monte Carlo, stochastic, deterministic, and other numerical methods through an abundance of worked examples and code, covering the solution of systems of linear algebraic equations and nonlinear equations as well as ordinary differential equations and partial differential equations. It not only shows how to use R’s powerful graphic tools to construct the types of plots most useful in scientific and engineering work, but also: Explains how to statistically analyze and fit data to linear and nonlinear models Explores numerical differentiation, integration, and optimization Describes how to find eigenvalues and eigenfunctions Discusses interpolation and curve fitting Considers the analysis of time series Using R for Numerical Analysis in Science and Engineering provides a solid introduction to the most useful numerical methods for scientific and engineering data analysis using R.

Using R for Numerical Analysis in Science and Engineering

Using R for Numerical Analysis in Science and Engineering PDF Author: Victor A. Bloomfield
Publisher: CRC Press
ISBN: 1315360497
Category : Mathematics
Languages : en
Pages : 362

Book Description
Instead of presenting the standard theoretical treatments that underlie the various numerical methods used by scientists and engineers, Using R for Numerical Analysis in Science and Engineering shows how to use R and its add-on packages to obtain numerical solutions to the complex mathematical problems commonly faced by scientists and engineers. This practical guide to the capabilities of R demonstrates Monte Carlo, stochastic, deterministic, and other numerical methods through an abundance of worked examples and code, covering the solution of systems of linear algebraic equations and nonlinear equations as well as ordinary differential equations and partial differential equations. It not only shows how to use R’s powerful graphic tools to construct the types of plots most useful in scientific and engineering work, but also: Explains how to statistically analyze and fit data to linear and nonlinear models Explores numerical differentiation, integration, and optimization Describes how to find eigenvalues and eigenfunctions Discusses interpolation and curve fitting Considers the analysis of time series Using R for Numerical Analysis in Science and Engineering provides a solid introduction to the most useful numerical methods for scientific and engineering data analysis using R.

Using R for Numerical Analysis in Science and Engineering

Using R for Numerical Analysis in Science and Engineering PDF Author: Victor A. Bloomfield
Publisher: CRC Press
ISBN: 1315362864
Category : Mathematics
Languages : en
Pages : 359

Book Description
Instead of presenting the standard theoretical treatments that underlie the various numerical methods used by scientists and engineers, Using R for Numerical Analysis in Science and Engineering shows how to use R and its add-on packages to obtain numerical solutions to the complex mathematical problems commonly faced by scientists and engineers. This practical guide to the capabilities of R demonstrates Monte Carlo, stochastic, deterministic, and other numerical methods through an abundance of worked examples and code, covering the solution of systems of linear algebraic equations and nonlinear equations as well as ordinary differential equations and partial differential equations. It not only shows how to use R’s powerful graphic tools to construct the types of plots most useful in scientific and engineering work, but also: Explains how to statistically analyze and fit data to linear and nonlinear models Explores numerical differentiation, integration, and optimization Describes how to find eigenvalues and eigenfunctions Discusses interpolation and curve fitting Considers the analysis of time series Using R for Numerical Analysis in Science and Engineering provides a solid introduction to the most useful numerical methods for scientific and engineering data analysis using R.

Numerical Methods for Scientists and Engineers

Numerical Methods for Scientists and Engineers PDF Author: Richard W. Hamming
Publisher: Courier Corporation
ISBN: 9780486652412
Category : Mathematics
Languages : en
Pages : 756

Book Description
This inexpensive paperback edition of a groundbreaking text stresses frequency approach in coverage of algorithms, polynomial approximation, Fourier approximation, exponential approximation, and other topics. Revised and enlarged 2nd edition.

Numerical Analysis Using R : Solutions to ODEs and PDEs

Numerical Analysis Using R : Solutions to ODEs and PDEs PDF Author: Graham W Griffiths
Publisher:
ISBN: 9781523103539
Category : Boundary value problems
Languages : en
Pages : 616

Book Description
This book presents the latest numerical solutions to initial value problems and boundary value problems described by ODEs and PDEs. The author offers practical methods that can be adapted to solve wide ranges of problems and illustrates them in the increasingly popular open source computer language R, allowing integration with more statistically based methods. The book begins with standard techniques, followed by an overview of 'high resolution' flux limiters and WENO to solve problems with solutions exhibiting high gradient phenomena. Meshless methods using radial basis functions are then discussed in the context of scattered data interpolation and the solution of PDEs on irregular grids. Three detailed case studies demonstrate how numerical methods can be used to tackle very different complex problems. With its focus on practical solutions to real-world problems, this book will be useful to students and practitioners in all areas of science and engineering, especially those using R.

Numerical Methods in Science and Engineering – A Practical Approach

Numerical Methods in Science and Engineering – A Practical Approach PDF Author: Rajasekaran S.
Publisher: S. Chand Publishing
ISBN: 8121923123
Category : Technology & Engineering
Languages : en
Pages : 686

Book Description
During the past two decades,owing to the advent of digital computers,numerical methods of analysis have become very popular for the solution of complex problems in physical and management sciences and in engineering.As the price of hardware keeps decreasing repidly,experts predict that in the near future one may have to pay onliy for sodtware.This underscores the importance of numerical computation to the scientist and engineers and,today,most undergraduates and postgraduates are being given training in the use of computers and access to the computers for the solution of problems.

Computational Methods for Numerical Analysis with R

Computational Methods for Numerical Analysis with R PDF Author: James P Howard, II
Publisher: CRC Press
ISBN: 1498723640
Category : Mathematics
Languages : en
Pages : 257

Book Description
Computational Methods for Numerical Analysis with R is an overview of traditional numerical analysis topics presented using R. This guide shows how common functions from linear algebra, interpolation, numerical integration, optimization, and differential equations can be implemented in pure R code. Every algorithm described is given with a complete function implementation in R, along with examples to demonstrate the function and its use. Computational Methods for Numerical Analysis with R is intended for those who already know R, but are interested in learning more about how the underlying algorithms work. As such, it is suitable for statisticians, economists, and engineers, and others with a computational and numerical background.

Numerical Analysis Using R

Numerical Analysis Using R PDF Author: Graham W. Griffiths
Publisher: Cambridge University Press
ISBN: 1107115612
Category : Mathematics
Languages : en
Pages : 637

Book Description
This book presents the latest numerical solutions to initial value problems and boundary valu problems described by ODES (Ordinary differencial equations) and PDEs (partiral differential equations). The primary focus in numerical solutions to initial value problems (IVPs) and boundary value problems (BVPs).

Introduction to Scientific Programming and Simulation Using R

Introduction to Scientific Programming and Simulation Using R PDF Author: Owen Jones
Publisher: CRC Press
ISBN: 1466570016
Category : Mathematics
Languages : en
Pages : 599

Book Description
Learn How to Program Stochastic ModelsHighly recommended, the best-selling first edition of Introduction to Scientific Programming and Simulation Using R was lauded as an excellent, easy-to-read introduction with extensive examples and exercises. This second edition continues to introduce scientific programming and stochastic modelling in a clear,

Introduction to Scientific Programming and Simulation Using R, Second Edition

Introduction to Scientific Programming and Simulation Using R, Second Edition PDF Author: Owen Jones
Publisher: CRC Press
ISBN: 1466569999
Category : Mathematics
Languages : en
Pages : 608

Book Description
Learn How to Program Stochastic Models Highly recommended, the best-selling first edition of Introduction to Scientific Programming and Simulation Using R was lauded as an excellent, easy-to-read introduction with extensive examples and exercises. This second edition continues to introduce scientific programming and stochastic modelling in a clear, practical, and thorough way. Readers learn programming by experimenting with the provided R code and data. The book’s four parts teach: Core knowledge of R and programming concepts How to think about mathematics from a numerical point of view, including the application of these concepts to root finding, numerical integration, and optimisation Essentials of probability, random variables, and expectation required to understand simulation Stochastic modelling and simulation, including random number generation and Monte Carlo integration In a new chapter on systems of ordinary differential equations (ODEs), the authors cover the Euler, midpoint, and fourth-order Runge-Kutta (RK4) schemes for solving systems of first-order ODEs. They compare the numerical efficiency of the different schemes experimentally and show how to improve the RK4 scheme by using an adaptive step size. Another new chapter focuses on both discrete- and continuous-time Markov chains. It describes transition and rate matrices, classification of states, limiting behaviour, Kolmogorov forward and backward equations, finite absorbing chains, and expected hitting times. It also presents methods for simulating discrete- and continuous-time chains as well as techniques for defining the state space, including lumping states and supplementary variables. Building readers’ statistical intuition, Introduction to Scientific Programming and Simulation Using R, Second Edition shows how to turn algorithms into code. It is designed for those who want to make tools, not just use them. The code and data are available for download from CRAN.

Multiple Factor Analysis by Example Using R

Multiple Factor Analysis by Example Using R PDF Author: Jérôme Pagès
Publisher: CRC Press
ISBN: 1482205475
Category : Mathematics
Languages : en
Pages : 274

Book Description
Multiple factor analysis (MFA) enables users to analyze tables of individuals and variables in which the variables are structured into quantitative, qualitative, or mixed groups. Written by the co-developer of this methodology, Multiple Factor Analysis by Example Using R brings together the theoretical and methodological aspects of MFA. It also includes examples of applications and details of how to implement MFA using an R package (FactoMineR). The first two chapters cover the basic factorial analysis methods of principal component analysis (PCA) and multiple correspondence analysis (MCA). The next chapter discusses factor analysis for mixed data (FAMD), a little-known method for simultaneously analyzing quantitative and qualitative variables without group distinction. Focusing on MFA, subsequent chapters examine the key points of MFA in the context of quantitative variables as well as qualitative and mixed data. The author also compares MFA and Procrustes analysis and presents a natural extension of MFA: hierarchical MFA (HMFA). The final chapter explores several elements of matrix calculation and metric spaces used in the book.