Water and Wastewater Treatment PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Water and Wastewater Treatment PDF full book. Access full book title Water and Wastewater Treatment by Joanne E. Drinan. Download full books in PDF and EPUB format.

Water and Wastewater Treatment

Water and Wastewater Treatment PDF Author: Joanne E. Drinan
Publisher: CRC Press
ISBN: 1439854017
Category : Technology & Engineering
Languages : en
Pages : 300

Book Description
Lauded for its engaging, highly readable style, the best-selling first edition became the premier guide for nonengineers involved in water and wastewater treatment operations. Water and Wastewater Treatment: A Guide for the Nonengineering Professional, Second Edition continues to provide a simple, nonmathematical account of the unit processes used to treat both drinking water and wastewater. Completely revised and expanded, this second edition adds new material on technological advances, regulatory requirements, and other current issues facing the water and wastewater industries. Using step-by-step, jargon-free language, the authors present all the basic unit processes involved in drinking water and wastewater treatment. They describe each unit process, the function of the process in water or wastewater treatment, and the basic equipment used in each process. They also explain how the processes fit together within a drinking water or wastewater treatment system and discuss the fundamental concepts that constitute water and wastewater treatment processes as a whole. Avoiding mathematics, chemistry, and biology, the book includes numerous illustrations for easy comprehension of concepts and processes. It also contains chapter summaries and an extensive glossary of terms and abbreviations for quick reference.

Water and Wastewater Treatment

Water and Wastewater Treatment PDF Author: Joanne E. Drinan
Publisher: CRC Press
ISBN: 1439854017
Category : Technology & Engineering
Languages : en
Pages : 300

Book Description
Lauded for its engaging, highly readable style, the best-selling first edition became the premier guide for nonengineers involved in water and wastewater treatment operations. Water and Wastewater Treatment: A Guide for the Nonengineering Professional, Second Edition continues to provide a simple, nonmathematical account of the unit processes used to treat both drinking water and wastewater. Completely revised and expanded, this second edition adds new material on technological advances, regulatory requirements, and other current issues facing the water and wastewater industries. Using step-by-step, jargon-free language, the authors present all the basic unit processes involved in drinking water and wastewater treatment. They describe each unit process, the function of the process in water or wastewater treatment, and the basic equipment used in each process. They also explain how the processes fit together within a drinking water or wastewater treatment system and discuss the fundamental concepts that constitute water and wastewater treatment processes as a whole. Avoiding mathematics, chemistry, and biology, the book includes numerous illustrations for easy comprehension of concepts and processes. It also contains chapter summaries and an extensive glossary of terms and abbreviations for quick reference.

Biological Wastewater Treatment

Biological Wastewater Treatment PDF Author: Mogens Henze
Publisher: IWA Publishing (International Water Assoc)
ISBN:
Category : Science
Languages : en
Pages : 170

Book Description
For information on the online course in Biological Wastewater Treatment from UNESCO-IHE, visit: http://www.iwapublishing.co.uk/books/biological-wastewater-treatment-online-course-principles-modeling-and-design Over the past twenty years, the knowledge and understanding of wastewater treatment have advanced extensively and moved away from empirically-based approaches to a first principles approach embracing chemistry, microbiology, physical and bioprocess engineering, and mathematics. Many of these advances have matured to the degree that they have been codified into mathematical models for simulation with computers. For a new generation of young scientists and engineers entering the wastewater treatment profession, the quantity, complexity and diversity of these new developments can be overwhelming, particularly in developing countries where access is not readily available to advanced level tertiary education courses in wastewater treatment. Biological Wastewater Treatment addresses this deficiency. It assembles and integrates the postgraduate course material of a dozen or so professors from research groups around the world that have made significant contributions to the advances in wastewater treatment. The book forms part of an internet-based curriculum in biological wastewater treatment which also includes: Summarized lecture handouts of the topics covered in book Filmed lectures by the author professors Tutorial exercises for students self-learning Upon completion of this curriculum the modern approach of modelling and simulation to wastewater treatment plant design and operation, be it activated sludge, biological nitrogen and phosphorus removal, secondary settling tanks or biofilm systems, can be embraced with deeper insight, advanced knowledge and greater confidence.

Biological Wastewater Treatment

Biological Wastewater Treatment PDF Author: C. P. Leslie Grady Jr.
Publisher: CRC Press
ISBN: 142000963X
Category : Technology & Engineering
Languages : en
Pages : 994

Book Description
Following in the footsteps of previous highly successful and useful editions, Biological Wastewater Treatment, Third Edition presents the theoretical principles and design procedures for biochemical operations used in wastewater treatment processes. It reflects important changes and advancements in the field, such as a revised treatment of the micr

Handbook of Water and Wastewater Treatment Technologies

Handbook of Water and Wastewater Treatment Technologies PDF Author: Nicholas P Cheremisinoff
Publisher: Butterworth-Heinemann
ISBN: 0750674989
Category : Technology & Engineering
Languages : en
Pages : 649

Book Description
An Overview of Water and Wastewater; What Filtration Is All About; Chemical Additives that Enhance Filtration; Selecting the Right Filter Media; What Pressure- and Cake-Filtration Are All; Cartridge and Other Filters Worth Mentioning; What Sand Filtration is All About; Sedimentation, Clarification, Flotation, and Membrane Separation Technologies; Ion Exchange and Carbon Adsorption; Water Sterilization Technologies; Treating the Sludge; Glossary; Index.

Fundamentals of Wastewater Treatment and Engineering

Fundamentals of Wastewater Treatment and Engineering PDF Author: Rumana Riffat
Publisher: CRC Press
ISBN: 1000575136
Category : Technology & Engineering
Languages : en
Pages : 430

Book Description
The 2nd edition of Fundamentals of Wastewater Treatment and Design introduces readers to the fundamental concepts of wastewater treatment, followed by engineering design of unit processes for sustainable treatment of municipal wastewater and resource recovery. It has been completely updated with new chapters to reflect current advances in design, resource recovery practices and research. Another highlight is the addition of the last chapter, which provides a culminating design experience of both urban and rural wastewater treatment systems. Filling the need for a textbook focused on wastewater, it covers history, current practices, emerging concerns, future directions and pertinent regulations that have shaped the objectives of this important area of engineering. Basic principles of reaction kinetics, reactor design and environmental microbiology are introduced along with natural purification processes. It also details the design of unit processes for primary, secondary and advanced treatment, as well as solids processing and removal. Recovery of water, energy and nutrients are explained with the help of process concepts and design applications. This textbook is designed for undergraduate and graduate students who have some knowledge of environmental chemistry and fluid mechanics. Professionals in the wastewater industry will also find this a handy reference.

Advances in Water and Wastewater Treatment

Advances in Water and Wastewater Treatment PDF Author: Rao Y. Surampalli
Publisher: ASCE Publications
ISBN: 9780784407417
Category : Technology & Engineering
Languages : en
Pages : 585

Book Description
Annotation "Advances in Water and Wastewater Treatment provides state-of-the-art information on the application of innovative technologies for water and wastewater treatment with an emphasis on the scientific principles for pollutant or pathogen removal. Described in detail are the practice and principles of wastewater treatment on topics such as: global warming, sustainable development, nutrient removal, bioplastics production, biosolid digestion and composting, pathogen reduction, metal leaching, secondary clarifiers, surface and subsurface constructed wetland, and wastewater reclamation. Environmental engineers and scientists involved in the practice of environmental engineering will benefit from the basic principles to innovation technologies application."--BOOK JACKET. Title Summary field provided by Blackwell North America, Inc. All Rights Reserved.

Operation of Wastewater Treatment Plants

Operation of Wastewater Treatment Plants PDF Author:
Publisher:
ISBN:
Category : Sewage
Languages : en
Pages : 562

Book Description


Industrial Wastewater Treatment, Recycling and Reuse

Industrial Wastewater Treatment, Recycling and Reuse PDF Author: Vivek V. Ranade
Publisher: Butterworth-Heinemann
ISBN: 0444634037
Category : Technology & Engineering
Languages : en
Pages : 576

Book Description
Industrial Wastewater Treatment, Recycling and Reuse is an accessible reference to assist you when handling wastewater treatment and recycling. It features an instructive compilation of methodologies, including advanced physico-chemical methods and biological methods of treatment. It focuses on recent industry practices and preferences, along with newer methodologies for energy generation through waste. The book is based on a workshop run by the Indus MAGIC program of CSIR, India. It covers advanced processes in industrial wastewater treatment, applications, and feasibility analysis, and explores the process intensification approach as well as implications for industrial applications. Techno-economic feasibility evaluation is addressed, along with a comparison of different approaches illustrated by specific case studies. Industrial Wastewater Treatment, Recycling and Reuse introduces you to the subject with specific reference to problems currently being experienced in different industry sectors, including the petroleum industry, the fine chemical industry, and the specialty chemicals manufacturing sector. Provides practical solutions for the treatment and recycling of industrial wastewater via case studies Instructive articles from expert authors give a concise overview of different physico-chemical and biological methods of treatment, cost-to-benefit analysis, and process comparison Supplies you with the relevant information to make quick process decisions

Wastewater Treatment Plants

Wastewater Treatment Plants PDF Author: Syed R. Qasim
Publisher: Routledge
ISBN: 1351405160
Category : Technology & Engineering
Languages : en
Pages : 939

Book Description
Step-by-step procedures for planning, design, construction and operation: * Health and environment * Process improvements * Stormwater and combined sewer control and treatment * Effluent disposal and reuse * Biosolids disposal and reuse * On-site treatment and disposal of small flows * Wastewater treatment plants should be designed so that the effluent standards and reuse objectives, and biosolids regulations can be met with reasonable ease and cost. The design should incorporate flexibility for dealing with seasonal changes, as well as long-term changes in wastewater quality and future regulations. Good planning and design, therefore, must be based on five major steps: characterization of the raw wastewater quality and effluent, pre-design studies to develop alternative processes and selection of final process train, detailed design of the selected alternative, contraction, and operation and maintenance of the completed facility. Engineers, scientists, and financial analysts must utilize principles from a wide range of disciplines: engineering, chemistry, microbiology, geology, architecture, and economics to carry out the responsibilities of designing a wastewater treatment plant. The objective of this book is to present the technical and nontechnical issues that are most commonly addressed in the planning and design reports for wastewater treatment facilities prepared by practicing engineers. Topics discussed include facility planning, process description, process selection logic, mass balance calculations, design calculations, and concepts for equipment sizing. Theory, design, operation and maintenance, trouble shooting, equipment selection and specifications are integrated for each treatment process. Thus delineation of such information for use by students and practicing engineers is the main purpose of this book.

Source Separation and Decentralization for Wastewater Management

Source Separation and Decentralization for Wastewater Management PDF Author: Tove A. Larsen
Publisher: IWA Publishing
ISBN: 1843393484
Category : Science
Languages : en
Pages : 502

Book Description
Is sewer-based wastewater treatment really the optimal technical solution in urban water management? This paradigm is increasingly being questioned. Growing water scarcity and the insight that water will be an important limiting factor for the quality of urban life are main drivers for new approaches in wastewater management. Source Separation and Decentralization for Wastewater Management sets up a comprehensive view of the resources involved in urban water management. It explores the potential of source separation and decentralization to provide viable alternatives to sewer-based urban water management. During the 1990s, several research groups started working on source-separating technologies for wastewater treatment. Source separation was not new, but had only been propagated as a cheap and environmentally friendly technology for the poor. The novelty was the discussion whether source separation could be a sustainable alternative to existing end-of-pipe systems, even in urban areas and industrialized countries. Since then, sustainable resource management and many different source-separating technologies have been investigated. The theoretical framework and also possible technologies have now developed to a more mature state. At the same time, many interesting technologies to process combined or concentrated wastewaters have evolved, which are equally suited for the treatment of source-separated domestic wastewater. The book presents a comprehensive view of the state of the art of source separation and decentralization. It discusses the technical possibilities and practical experience with source separation in different countries around the world. The area is in rapid development, but many of the fundamental insights presented in this book will stay valid. Source Separation and Decentralization for Wastewater Management is intended for all professionals and researchers interested in wastewater management, whether or not they are familiar with source separation. Editors: Tove A. Larsen, Kai M. Udert and Judit Lienert, Eawag - Swiss Federal Institute of Aquatic Science and Technology, Switzerland. Contributors: Yuval Alfiya, Technion - Israel Institute of Technology, Faculty of Civil and Environmental Engineering; Prof. Dr. M. Bruce Beck, University of Georgia, Warnell School of Forestry and Natural Resources; Dr. Christian Binz, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Innovation Research in Utility Sectors (Cirus); Prof. em. Dr. Markus Boller, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Urban Water Management (SWW); Prof. Dr. Eran Friedler, Technion – Israel Institute of Technology, Faculty of Civil and Environmental Engineering; Zenah Bradford-Hartke, The University of New South Wales, School of Chemical Engineering and UNESCO Centre for Membrane Science and Technology; Dr. Shelley Brown-Malker, Very Small Particle Company Ltd; Bert Bundervoet, Ghent University, Laboratory Microbial Ecology and Technology (LabMET); Prof. Dr. David Butler, University of Exeter, Centre for Water Systems; Dr. Christopher A. Buzie, Hamburg University of Technology, Institute of Wastewater Management and Water Protection; Dr. Dana Cordell, University of Technology, Sydney (UTS), Institute for Sustainable Futures (ISF); Dr. Vasileios Diamantis, Democritus University of Thrace, Department of Environmental Engineering; Prof. Dr. Jan Willem Erisman, Louis Bolk Institute; VU University Amsterdam, Department of Earth Sciences; Barbara Evans, University of Leeds, School of Civil Engineering; Prof. Dr. Malin Falkenmark, Stockholm International Water Institute; Dr. Ted Gardner, Central Queensland University, Institute for Resource Industries and Sustainability; Dr. Heiko Gebauer, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Innovation Research in Utility Sectors (Cirus); Prof. em. Dr. Willi Gujer, Swiss Federal Institute of Technology Zürich (ETHZ), Department of Civil, Environmental and Geomatic Engineering (BAUG); Prof. Dr. Bruce Jefferson, Cranfield University, Cranfield Water Science Institute; Prof. Dr. Paul Jeffrey, Cranfield University, Cranfield Water Science Institute; Sarina Jenni, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Process Engineering Department (Eng); Prof. Dr. Håkan Jönsson, SLU - Swedish University of Agricultural Sciences, Department of Energy and Technology; Prof. Dr. Ïsik Kabdasli, Ïstanbul Technical University, Civil Engineering Faculty; Prof. Dr. Jörg Keller, The University of Queensland, Advanced Water Management Centre (AWMC); Prof. Dr. Klaus Kömmerer, Leuphana Universität Lüneburg, Institute of Sustainable and Environmental Chemistry; Dr. Katarzyna Kujawa-Roeleveld, Wageningen University, Agrotechnology and Food Sciences Group; Dr. Tove A. Larsen, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Urban Water Management (SWW); Michele Laureni, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Process Engineering Department (Eng); Prof. Dr. Gregory Leslie, The University of New South Wales, School of Chemical Engineering and UNESCO Centre for Membrane Science and Technology; Dr. Harold Leverenz, University of California at Davis, Department of Civil and Environmental Engineering; Dr. Judit Lienert, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Social Sciences (ESS); Prof. Dr. Jürg Londong, Bauhaus-Universität Weimar, Department of Urban Water Management and Sanitation; Dr. Christoph Lüthi, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Water and Sanitation in Developing Countries (Sandec); Prof. Dr. Max Maurer, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Urban Water Management (SWW); Swiss Federal Institute of Technology Zürich (ETHZ), Department of Civil, Environmental and Geomatic Engineering; Prof. em. Dr. Gustaf Olsson, Lund University, Department of Measurement Technology and Industrial Electrical Engineering (MIE); Prof. Dr. Ralf Otterpohl, Hamburg University of Technology, Institute of Wastewater Management and Water Protection; Dr. Bert Palsma, STOWA, Dutch Foundation for Applied Water Research; Dr. Arne R. Panesar, Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH; Prof. Dr. Bruce E. Rittmann, Arizona State University, Swette Center for Environmental Biotechnology; Prof. Dr. Hansruedi Siegrist, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Process Engineering Department (Eng); Dr. Ashok Sharma, Commonwealth Scientific and Industrial Research Organisation, Australia, Land and Water Division; Prof. Dr. Thor Axel Stenström, Stockholm Environment Institute, Bioresources Group; Norwegian University of Life Sciences, Department of Mathematical Science and Technology; Dr. Eckhard Störmer, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Innovation Research in Utility Sectors (Cirus); Bjartur Swart, STOWA, Dutch Foundation for Applied Water Research; MWH North Europe; Prof. em. Dr. George Tchobanoglous, University of California at Davis, Department of Civil and Environmental Engineering; Elizabeth Tilley, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Water and Sanitation in Developing Countries (Sandec); Swiss Federal Institute of Technology Zürich (ETHZ), Centre for Development and Cooperation (NADEL); Prof. Dr. Bernhard Truffer, Eawag, Swiss Federal Institute of Aquatic Science and Technology; Innovation Research in Utility Sectors (Cirus); Prof. Dr. Olcay Tünay, Ïstanbul Technical University, Civil Engineering Faculty; Dr. Kai M. Udert, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Process Engineering Department (Eng); Prof. em. Dr. Willy Verstraete, Ghent University, Laboratory Microbial Ecology and Technology (LabMET); Prof. Dr. Björn Vinnerås, SLU - Swedish University of Agricultural Sciences, Department of Energy and Technology; Prof. Dr. Urs von Gunten, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Water Resources and Drinking Water (W+T); Ecole Polytechnique Fédérale de Lausanne (EPFL),School of Architecture, Civil and Environmental Engineering (ENAC); Prof. em. Dr. Peter A. Wilderer, Technische Universität München, Institute for Advanced Study; Prof. Dr. Jun Xia, Chinese Academy of Sciences (CAS), Center for Water Resources Research and Key Laboratory of Water Cycle and Related Surface Processes; Prof. Dr. Grietje Zeeman, Wageningen University, Agrotechnology and Food Sciences Group