The Mathematical Theory of Finite Element Methods PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download The Mathematical Theory of Finite Element Methods PDF full book. Access full book title The Mathematical Theory of Finite Element Methods by Susanne Brenner. Download full books in PDF and EPUB format.

The Mathematical Theory of Finite Element Methods

The Mathematical Theory of Finite Element Methods PDF Author: Susanne Brenner
Publisher: Springer Science & Business Media
ISBN: 1475736584
Category : Mathematics
Languages : en
Pages : 369

Book Description
A rigorous and thorough mathematical introduction to the subject; A clear and concise treatment of modern fast solution techniques such as multigrid and domain decomposition algorithms; Second edition contains two new chapters, as well as many new exercises; Previous edition sold over 3000 copies worldwide

The Mathematical Theory of Finite Element Methods

The Mathematical Theory of Finite Element Methods PDF Author: Susanne Brenner
Publisher: Springer Science & Business Media
ISBN: 1475736584
Category : Mathematics
Languages : en
Pages : 369

Book Description
A rigorous and thorough mathematical introduction to the subject; A clear and concise treatment of modern fast solution techniques such as multigrid and domain decomposition algorithms; Second edition contains two new chapters, as well as many new exercises; Previous edition sold over 3000 copies worldwide

An Introduction to the Mathematical Theory of Finite Elements

An Introduction to the Mathematical Theory of Finite Elements PDF Author: J. T. Oden
Publisher: Courier Corporation
ISBN: 0486142213
Category : Technology & Engineering
Languages : en
Pages : 450

Book Description
This introduction to the theory of Sobolev spaces and Hilbert space methods in partial differential equations is geared toward readers of modest mathematical backgrounds. It offers coherent, accessible demonstrations of the use of these techniques in developing the foundations of the theory of finite element approximations. J. T. Oden is Director of the Institute for Computational Engineering & Sciences (ICES) at the University of Texas at Austin, and J. N. Reddy is a Professor of Engineering at Texas A&M University. They developed this essentially self-contained text from their seminars and courses for students with diverse educational backgrounds. Their effective presentation begins with introductory accounts of the theory of distributions, Sobolev spaces, intermediate spaces and duality, the theory of elliptic equations, and variational boundary value problems. The second half of the text explores the theory of finite element interpolation, finite element methods for elliptic equations, and finite element methods for initial boundary value problems. Detailed proofs of the major theorems appear throughout the text, in addition to numerous examples.

Theory and Practice of Finite Elements

Theory and Practice of Finite Elements PDF Author: Alexandre Ern
Publisher: Springer Science & Business Media
ISBN: 1475743556
Category : Mathematics
Languages : en
Pages : 531

Book Description
This text presenting the mathematical theory of finite elements is organized into three main sections. The first part develops the theoretical basis for the finite element methods, emphasizing inf-sup conditions over the more conventional Lax-Milgrim paradigm. The second and third parts address various applications and practical implementations of the method, respectively. It contains numerous examples and exercises.

The Finite Element Method: Theory, Implementation, and Applications

The Finite Element Method: Theory, Implementation, and Applications PDF Author: Mats G. Larson
Publisher: Springer Science & Business Media
ISBN: 3642332870
Category : Computers
Languages : en
Pages : 403

Book Description
This book gives an introduction to the finite element method as a general computational method for solving partial differential equations approximately. Our approach is mathematical in nature with a strong focus on the underlying mathematical principles, such as approximation properties of piecewise polynomial spaces, and variational formulations of partial differential equations, but with a minimum level of advanced mathematical machinery from functional analysis and partial differential equations. In principle, the material should be accessible to students with only knowledge of calculus of several variables, basic partial differential equations, and linear algebra, as the necessary concepts from more advanced analysis are introduced when needed. Throughout the text we emphasize implementation of the involved algorithms, and have therefore mixed mathematical theory with concrete computer code using the numerical software MATLAB is and its PDE-Toolbox. We have also had the ambition to cover some of the most important applications of finite elements and the basic finite element methods developed for those applications, including diffusion and transport phenomena, solid and fluid mechanics, and also electromagnetics.​

Numerical Solution of Partial Differential Equations by the Finite Element Method

Numerical Solution of Partial Differential Equations by the Finite Element Method PDF Author: Claes Johnson
Publisher: Courier Corporation
ISBN: 0486131599
Category : Mathematics
Languages : en
Pages : 290

Book Description
An accessible introduction to the finite element method for solving numeric problems, this volume offers the keys to an important technique in computational mathematics. Suitable for advanced undergraduate and graduate courses, it outlines clear connections with applications and considers numerous examples from a variety of science- and engineering-related specialties.This text encompasses all varieties of the basic linear partial differential equations, including elliptic, parabolic and hyperbolic problems, as well as stationary and time-dependent problems. Additional topics include finite element methods for integral equations, an introduction to nonlinear problems, and considerations of unique developments of finite element techniques related to parabolic problems, including methods for automatic time step control. The relevant mathematics are expressed in non-technical terms whenever possible, in the interests of keeping the treatment accessible to a majority of students.

The Finite Element Method for Initial Value Problems

The Finite Element Method for Initial Value Problems PDF Author: Karan S. Surana
Publisher: CRC Press
ISBN: 1351269984
Category : Science
Languages : en
Pages : 747

Book Description
Unlike most finite element books that cover time dependent processes (IVPs) in a cursory manner, The Finite Element Method for Initial Value Problems: Mathematics and Computations focuses on the mathematical details as well as applications of space-time coupled and space-time decoupled finite element methods for IVPs. Space-time operator classification, space-time methods of approximation, and space-time calculus of variations are used to establish unconditional stability of space-time methods during the evolution. Space-time decoupled methods are also presented with the same rigor. Stability of space-time decoupled methods, time integration of ODEs including the finite element method in time are presented in detail with applications. Modal basis, normal mode synthesis techniques, error estimation, and a posteriori error computations for space-time coupled as well as space-time decoupled methods are presented. This book is aimed at a second-semester graduate level course in FEM.

The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations

The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations PDF Author: A. K. Aziz
Publisher: Academic Press
ISBN: 1483267989
Category : Technology & Engineering
Languages : en
Pages : 796

Book Description
The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations is a collection of papers presented at the 1972 Symposium by the same title, held at the University of Maryland, Baltimore County Campus. This symposium relates considerable numerical analysis involved in research in both theoretical and practical aspects of the finite element method. This text is organized into three parts encompassing 34 chapters. Part I focuses on the mathematical foundations of the finite element method, including papers on theory of approximation, variational principles, the problems of perturbations, and the eigenvalue problem. Part II covers a large number of important results of both a theoretical and a practical nature. This part discusses the piecewise analytic interpolation and approximation of triangulated polygons; the Patch test for convergence of finite elements; solutions for Dirichlet problems; variational crimes in the field; and superconvergence result for the approximate solution of the heat equation by a collocation method. Part III explores the many practical aspects of finite element method. This book will be of great value to mathematicians, engineers, and physicists.

Finite Elements

Finite Elements PDF Author: Ivo Babuska
Publisher: Oxford University Press
ISBN: 0198506694
Category : Mathematics
Languages : en
Pages : 336

Book Description
Most of the many books on finite elements are devoted either to mathematical theory or to engineering applications, but not to both. This book presents computed numbers which not only illustrate the theory but can only be analysed using the theory. This approach, both dual and interacting between theory and computation makes this book unique.

Green's Functions and Finite Elements

Green's Functions and Finite Elements PDF Author: Friedel Hartmann
Publisher: Springer Science & Business Media
ISBN: 3642295231
Category : Science
Languages : en
Pages : 335

Book Description
This book elucidates how Finite Element methods look like from the perspective of Green’s functions, and shows new insights into the mathematical theory of Finite Elements. Practically, this new view on Finite Elements enables the reader to better assess solutions of standard programs and to find better model of a given problem. The book systematically introduces the basic concepts how Finite Elements fulfill the strategy of Green’s functions and how approximating of Green’s functions. It discusses in detail the discretization error and shows that are coherent with the strategy of “goal oriented refinement”. The book also gives much attention to the dependencies of FE solutions from the parameter set of the model.

Finite Elements for Analysis and Design

Finite Elements for Analysis and Design PDF Author: J. E. Akin
Publisher: Elsevier
ISBN: 008050647X
Category : Technology & Engineering
Languages : en
Pages : 563

Book Description
The finite element method (FEM) is an analysis tool for problem-solving used throughout applied mathematics, engineering, and scientific computing. Finite Elements for Analysis and Design provides a thoroughlyrevised and up-to-date account of this important tool and its numerous applications, with added emphasis on basic theory. Numerous worked examples are included to illustrate the material. Akin clearly explains the FEM, a numerical analysis tool for problem-solving throughout applied mathematics, engineering and scientific computing Basic theory has been added in the book, including worked examples to enable students to understand the concepts Contains coverage of computational topics, including worked examples to enable students to understand concepts Improved coverage of sensitivity analysis and computational fluid dynamics Uses example applications to increase students' understanding Includes a disk with the FORTRAN source for the programs cided in the text