Algebraic Approaches to Partial Differential Equations PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Algebraic Approaches to Partial Differential Equations PDF full book. Access full book title Algebraic Approaches to Partial Differential Equations by Xiaoping Xu. Download full books in PDF and EPUB format.

Algebraic Approaches to Partial Differential Equations

Algebraic Approaches to Partial Differential Equations PDF Author: Xiaoping Xu
Publisher: Springer Science & Business Media
ISBN: 3642368743
Category : Mathematics
Languages : en
Pages : 408

Book Description
This book presents the various algebraic techniques for solving partial differential equations to yield exact solutions, techniques developed by the author in recent years and with emphasis on physical equations such as: the Maxwell equations, the Dirac equations, the KdV equation, the KP equation, the nonlinear Schrodinger equation, the Davey and Stewartson equations, the Boussinesq equations in geophysics, the Navier-Stokes equations and the boundary layer problems. In order to solve them, I have employed the grading technique, matrix differential operators, stable-range of nonlinear terms, moving frames, asymmetric assumptions, symmetry transformations, linearization techniques and special functions. The book is self-contained and requires only a minimal understanding of calculus and linear algebra, making it accessible to a broad audience in the fields of mathematics, the sciences and engineering. Readers may find the exact solutions and mathematical skills needed in their own research.

Algebraic Approaches to Partial Differential Equations

Algebraic Approaches to Partial Differential Equations PDF Author: Xiaoping Xu
Publisher: Springer Science & Business Media
ISBN: 3642368743
Category : Mathematics
Languages : en
Pages : 408

Book Description
This book presents the various algebraic techniques for solving partial differential equations to yield exact solutions, techniques developed by the author in recent years and with emphasis on physical equations such as: the Maxwell equations, the Dirac equations, the KdV equation, the KP equation, the nonlinear Schrodinger equation, the Davey and Stewartson equations, the Boussinesq equations in geophysics, the Navier-Stokes equations and the boundary layer problems. In order to solve them, I have employed the grading technique, matrix differential operators, stable-range of nonlinear terms, moving frames, asymmetric assumptions, symmetry transformations, linearization techniques and special functions. The book is self-contained and requires only a minimal understanding of calculus and linear algebra, making it accessible to a broad audience in the fields of mathematics, the sciences and engineering. Readers may find the exact solutions and mathematical skills needed in their own research.

Algebraic Approach to Differential Equations

Algebraic Approach to Differential Equations PDF Author:
Publisher:
ISBN: 9814467960
Category :
Languages : en
Pages :

Book Description


Computational Flexible Multibody Dynamics

Computational Flexible Multibody Dynamics PDF Author: Bernd Simeon
Publisher: Springer Science & Business Media
ISBN: 3642351581
Category : Mathematics
Languages : en
Pages : 254

Book Description
This monograph, written from a numerical analysis perspective, aims to provide a comprehensive treatment of both the mathematical framework and the numerical methods for flexible multibody dynamics. Not only is this field permanently and rapidly growing, with various applications in aerospace engineering, biomechanics, robotics, and vehicle analysis, its foundations can also be built on reasonably established mathematical models. Regarding actual computations, great strides have been made over the last two decades, as sophisticated software packages are now capable of simulating highly complex structures with rigid and deformable components. The approach used in this book should benefit graduate students and scientists working in computational mechanics and related disciplines as well as those interested in time-dependent partial differential equations and heterogeneous problems with multiple time scales. Additionally, a number of open issues at the frontiers of research are addressed by taking a differential-algebraic approach and extending it to the notion of transient saddle point problems.

Partial Differential Equations

Partial Differential Equations PDF Author: Walter A. Strauss
Publisher: John Wiley & Sons
ISBN: 0470054565
Category : Mathematics
Languages : en
Pages : 467

Book Description
Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.

Geometric and Algebraic Structures in Differential Equations

Geometric and Algebraic Structures in Differential Equations PDF Author: P.H. Kersten
Publisher: Springer Science & Business Media
ISBN: 9400901798
Category : Mathematics
Languages : en
Pages : 346

Book Description
The geometrical theory of nonlinear differential equations originates from classical works by S. Lie and A. Bäcklund. It obtained a new impulse in the sixties when the complete integrability of the Korteweg-de Vries equation was found and it became clear that some basic and quite general geometrical and algebraic structures govern this property of integrability. Nowadays the geometrical and algebraic approach to partial differential equations constitutes a special branch of modern mathematics. In 1993, a workshop on algebra and geometry of differential equations took place at the University of Twente (The Netherlands), where the state-of-the-art of the main problems was fixed. This book contains a collection of invited lectures presented at this workshop. The material presented is of interest to those who work in pure and applied mathematics and especially in mathematical physics.

Differential Equations and Group Methods for Scientists and Engineers

Differential Equations and Group Methods for Scientists and Engineers PDF Author: James M. Hill
Publisher: CRC Press
ISBN: 9780849344428
Category : Mathematics
Languages : en
Pages : 232

Book Description
Differential Equations and Group Methods for Scientists and Engineers presents a basic introduction to the technically complex area of invariant one-parameter Lie group methods and their use in solving differential equations. The book features discussions on ordinary differential equations (first, second, and higher order) in addition to partial differential equations (linear and nonlinear). Each chapter contains worked examples with several problems at the end; answers to these problems and hints on how to solve them are found at the back of the book. Students and professionals in mathematics, science, and engineering will find this book indispensable for developing a fundamental understanding of how to use invariant one-parameter group methods to solve differential equations.

Reduced Basis Methods for Partial Differential Equations

Reduced Basis Methods for Partial Differential Equations PDF Author: Alfio Quarteroni
Publisher: Springer
ISBN: 3319154311
Category : Mathematics
Languages : en
Pages : 296

Book Description
This book provides a basic introduction to reduced basis (RB) methods for problems involving the repeated solution of partial differential equations (PDEs) arising from engineering and applied sciences, such as PDEs depending on several parameters and PDE-constrained optimization. The book presents a general mathematical formulation of RB methods, analyzes their fundamental theoretical properties, discusses the related algorithmic and implementation aspects, and highlights their built-in algebraic and geometric structures. More specifically, the authors discuss alternative strategies for constructing accurate RB spaces using greedy algorithms and proper orthogonal decomposition techniques, investigate their approximation properties and analyze offline-online decomposition strategies aimed at the reduction of computational complexity. Furthermore, they carry out both a priori and a posteriori error analysis. The whole mathematical presentation is made more stimulating by the use of representative examples of applicative interest in the context of both linear and nonlinear PDEs. Moreover, the inclusion of many pseudocodes allows the reader to easily implement the algorithms illustrated throughout the text. The book will be ideal for upper undergraduate students and, more generally, people interested in scientific computing. All these pseudocodes are in fact implemented in a MATLAB package that is freely available at https://github.com/redbkit

Approaches to Singular Analysis

Approaches to Singular Analysis PDF Author: Juan B. Gil
Publisher: Birkhäuser
ISBN: 303488253X
Category : Mathematics
Languages : en
Pages : 264

Book Description
This collection presents various approaches to analytic problems that arise in the context of singular spaces. It contains articles offering introductions to various pseudodifferential calculi and discussions of relations between them, plus invited papers from mathematicians who have made significant contributions to this field

Partial Differential Equations and Group Theory

Partial Differential Equations and Group Theory PDF Author: J.F. Pommaret
Publisher: Springer Science & Business Media
ISBN: 940172539X
Category : Mathematics
Languages : en
Pages : 481

Book Description
Ordinary differential control thPory (the classical theory) studies input/output re lations defined by systems of ordinary differential equations (ODE). The various con cepts that can be introduced (controllability, observability, invertibility, etc. ) must be tested on formal objects (matrices, vector fields, etc. ) by means of formal operations (multiplication, bracket, rank, etc. ), but without appealing to the explicit integration (search for trajectories, etc. ) of the given ODE. Many partial results have been re cently unified by means of new formal methods coming from differential geometry and differential algebra. However, certain problems (invariance, equivalence, linearization, etc. ) naturally lead to systems of partial differential equations (PDE). More generally, partial differential control theory studies input/output relations defined by systems of PDE (mechanics, thermodynamics, hydrodynamics, plasma physics, robotics, etc. ). One of the aims of this book is to extend the preceding con cepts to this new situation, where, of course, functional analysis and/or a dynamical system approach cannot be used. A link will be exhibited between this domain of applied mathematics and the famous 'Backlund problem', existing in the study of solitary waves or solitons. In particular, we shall show how the methods of differ ential elimination presented here will allow us to determine compatibility conditions on input and/or output as a better understanding of the foundations of control the ory. At the same time we shall unify differential geometry and differential algebra in a new framework, called differential algebraic geometry.

A Primer of Algebraic D-Modules

A Primer of Algebraic D-Modules PDF Author: S. C. Coutinho
Publisher: Cambridge University Press
ISBN: 0521551196
Category : Mathematics
Languages : en
Pages : 223

Book Description
The theory of D-modules is a rich area of study combining ideas from algebra and differential equations, and it has significant applications to diverse areas such as singularity theory and representation theory. This book introduces D-modules and their applications avoiding all unnecessary over-sophistication. It is aimed at beginning graduate students and the approach taken is algebraic, concentrating on the role of the Weyl algebra. Very few prerequisites are assumed, and the book is virtually self-contained. Exercises are included at the end of each chapter and the reader is given ample references to the more advanced literature. This is an excellent introduction to D-modules for all who are new to this area.