Classical Trajectory Perspective of Atomic Ionization in Strong Laser Fields PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Classical Trajectory Perspective of Atomic Ionization in Strong Laser Fields PDF full book. Access full book title Classical Trajectory Perspective of Atomic Ionization in Strong Laser Fields by Jie Liu. Download full books in PDF and EPUB format.

Classical Trajectory Perspective of Atomic Ionization in Strong Laser Fields

Classical Trajectory Perspective of Atomic Ionization in Strong Laser Fields PDF Author: Jie Liu
Publisher: Springer Science & Business Media
ISBN: 3642405495
Category : Science
Languages : en
Pages : 84

Book Description
The ionization of atoms and molecules in strong laser fields is an active field in modern physics and has versatile applications in such as attosecond physics, X-ray generation, inertial confined fusion (ICF), medical science and so on. Classical Trajectory Perspective of Atomic Ionization in Strong Laser Fields covers the basic concepts in this field and discusses many interesting topics using the semiclassical model of classical trajectory ensemble simulation, which is one of the most successful ionization models and has the advantages of a clear picture, feasible computing and accounting for many exquisite experiments quantitatively. The book also presents many applications of the model in such topics as the single ionization, double ionization, neutral atom acceleration and other timely issues in strong field physics, and delivers useful messages to readers with presenting the classical trajectory perspective on the strong field atomic ionization. The book is intended for graduate students and researchers in the field of laser physics, atom molecule physics and theoretical physics. Dr. Jie Liu is a professor of Institute of Applied Physics and Computational Mathematics, China and Peking University.

Classical Trajectory Perspective of Atomic Ionization in Strong Laser Fields

Classical Trajectory Perspective of Atomic Ionization in Strong Laser Fields PDF Author: Jie Liu
Publisher: Springer Science & Business Media
ISBN: 3642405495
Category : Science
Languages : en
Pages : 84

Book Description
The ionization of atoms and molecules in strong laser fields is an active field in modern physics and has versatile applications in such as attosecond physics, X-ray generation, inertial confined fusion (ICF), medical science and so on. Classical Trajectory Perspective of Atomic Ionization in Strong Laser Fields covers the basic concepts in this field and discusses many interesting topics using the semiclassical model of classical trajectory ensemble simulation, which is one of the most successful ionization models and has the advantages of a clear picture, feasible computing and accounting for many exquisite experiments quantitatively. The book also presents many applications of the model in such topics as the single ionization, double ionization, neutral atom acceleration and other timely issues in strong field physics, and delivers useful messages to readers with presenting the classical trajectory perspective on the strong field atomic ionization. The book is intended for graduate students and researchers in the field of laser physics, atom molecule physics and theoretical physics. Dr. Jie Liu is a professor of Institute of Applied Physics and Computational Mathematics, China and Peking University.

Advances Of Atoms And Molecules In Strong Laser Fields

Advances Of Atoms And Molecules In Strong Laser Fields PDF Author: Liu Yunquan
Publisher: World Scientific
ISBN: 9814696404
Category : Science
Languages : en
Pages : 248

Book Description
This volume presents the latest advancements and future perspectives of atomic, molecular and optical (AMO) physics and its vital role in modern sciences and technologies. The chapters are devoted to a wide range of quantum systems, with an emphasis on the understanding of ionization, high-harmonic generation, molecular orbital imaging and coherent control phenomena originating from light-matter interactions. The book overviews current research landscape and highlight major scientific trends in AMO physics interfacing with interdisciplinary sciences. It may be particularly interesting for young researchers working on establishing their scientific interests and goals.

A Trajectory Description of Quantum Processes. II. Applications

A Trajectory Description of Quantum Processes. II. Applications PDF Author: Ángel S. Sanz
Publisher: Springer
ISBN: 3642179746
Category : Science
Languages : en
Pages : 333

Book Description
Trajectory-based formalisms are an intuitively appealing way of describing quantum processes because they allow the use of "classical" concepts. Beginning as an introductory level suitable for students, this two-volume monograph presents (1) the fundamentals and (2) the applications of the trajectory description of basic quantum processes. This second volume is focussed on simple and basic applications of quantum processes such as interference and diffraction of wave packets, tunneling, diffusion and bound-state and scattering problems. The corresponding analysis is carried out within the Bohmian framework. By stressing its interpretational aspects, the book leads the reader to an alternative and complementary way to better understand the underlying quantum dynamics.

Quantum Collisions and Confinement of Atomic and Molecular Species, and Photons

Quantum Collisions and Confinement of Atomic and Molecular Species, and Photons PDF Author: P. C. Deshmukh
Publisher: Springer Nature
ISBN: 9811399697
Category : Science
Languages : en
Pages : 284

Book Description
This book comprises selected peer-reviewed papers presented at the 7th Topical Conference of the Indian Society of Atomic and Molecular Physics, jointly held at IISER Tirupati and IIT Tirupati, India. The contributions address current topics of interest in atomic and molecular physics, both from the theoretical and experimental perspective. The major focus areas include quantum collisions, spectroscopy of atomic and molecular clusters, photoionization, Wigner time delay in collisions, laser cooling, Bose-Einstein condensates, atomic clocks, quantum computing, and trapping and manipulation of quantum systems. The book also discusses emerging topics such as ultrafast quantum processes including those at the attosecond time-scale. This book will prove to be a valuable reference for students and researchers working in the field of atomic and molecular physics.

Atoms in Intense Laser Fields

Atoms in Intense Laser Fields PDF Author: C. J. Joachain
Publisher: Cambridge University Press
ISBN: 0521793017
Category : Science
Languages : en
Pages : 581

Book Description
A unified account of the rapidly developing field of high-intensity laser-atom interactions, suitable for both graduate students and researchers.

Super-Intense Laser—Atom Physics

Super-Intense Laser—Atom Physics PDF Author: A. L'Huillier
Publisher: Springer Science & Business Media
ISBN: 1461579635
Category : Science
Languages : en
Pages : 494

Book Description
The rapid development of powerful pulsed lasers is at the origin of a conside rable interest in studying the response of an atom, a molecule (or a solid) to a strong electromagnetic field. It is now possible to produce at the laboratory scale, ultra-short 13 pulses with a duration of 100 femtoseconds (10- second) and a power of the order 12 of 1 terawatt (10 Watt). Under these conditions, very high peak intensities may be obtained and electric fields exceeding typical electron binding fields in atoms are generated. The interaction of an atom or a molecule with such electromagnetic fields has a highly non-linear character which leads to unexpected phenomena. Amongst them, - above-threshold ionization (ATI) i.e. the absorption of additional photons in excess of the minimal number necessary to overcome the ionization potential and its molecular counterpart, above-threshold dissociation (ATD); - generation of very high harmonics of the driving field; - stabilization of one-electron systems in strong fields. These processes were the main topics of two international meetings which were held in 1989 and 1991 in the United States under the common name SILAP (Super-Intense Laser-Atom Physics).

Strong field physics and attosecond science

Strong field physics and attosecond science PDF Author: Weifeng Yang
Publisher: Frontiers Media SA
ISBN: 2832522750
Category : Science
Languages : en
Pages : 88

Book Description


Super-Intense Laser-Atom Physics

Super-Intense Laser-Atom Physics PDF Author: Bernard Piraux
Publisher: Springer Science & Business Media
ISBN: 9780792368632
Category : Science
Languages : en
Pages : 444

Book Description
The study of atomic systems exposed to super-intense laser fields de fines an important area in atomic, molecular and optical physics. Although the concept of super-intense field has no absolute meaning, it is now usual to call an electromagnetic field super-intense when it exceeds the atomic binding field. In the case of the simplest atomic system, hydrogen in its 16 2 ground state, this occurs above an intensity of 3. 5 x 10 Wattfcm which is the atomic unit of intensity. Presently at the laboratory scale and in ex tremely short and tightly focussed laser pulses, the electric field strength 16 18 2 reaches peak values which are of the order of 10 - 10 Wattfcm in the infrared frequency regime, the prospect being that such peak intensities may be reached within a few years in a regime of much higher frequencies (XUV or even X). The interaction of such electromagnetic fields with an atomic system has a highly non-linear character which has led to the observation of to tally unexpected phenomena. There are three fundamental processes which have marked the beginning of an intensive research in the field of super intense laser-atom physics (SILAP). These processes which only involve one atomic electron are (i) the so-called above-threshold ionisation i. e.

Super-Intense Laser-Atom Physics IV

Super-Intense Laser-Atom Physics IV PDF Author: H.G. Muller
Publisher: Springer Science & Business Media
ISBN: 9780792340485
Category : Science
Languages : en
Pages : 630

Book Description
Atoms in strong radiation fields are interesting objects for study, and the research field that concerns itself with this study is a comparatively young one. For a long period after the ~scovery of the photoelectric effect. it was not possible to generate electro magnetic fields that did more than perturb the atom only slightly, and (first-or~er) perturbation theory could perfectly explain what was going on at those low intensities. The development of the pulsed laser bas changed this state of affairs in a rather dramatic way, and fields can be applied that really have a large, or even dominant influence on atomic structure. In the latter case, w~ speak of super-intense fields. Since the interaction between atoms and electromagnetic waves is characterized by many parameters other than the light intensity, such as frequency, iQnization potential, orbit time, etc., it is actually quite difficult to define what is exactly meant by the term 'super-intense'. Obviously the term does not have an absolute meaning, and intensity should always be viewed in relation to other properties of the system. An atom in a radiation field can thus best be described in terms of various ratios of the quantities involved. The nature of the system sometimes drastically changes if the value of one of these parameters exceeds a certain critical value, and the new regime could be called super-intense with respect to that parameter.

Advances in Ultrafast Optics

Advances in Ultrafast Optics PDF Author: Fei He
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110304554
Category : Science
Languages : en
Pages : 443

Book Description
Being the most active field in modern physics, Optical Physics has developed many new branches and interdisciplinary fields overlapping with various classical disciplines. This series summarizes the advancements of optical physics in the past twenty years in the following fields: High Field Laser Physics, Precision Laser Spectroscopy, Nonlinear Optics, Nanophotonics, Quantum Optics, Ultrafast Optics, Condensed Matter Optics, and Molecular Biophotonics.