Computational Cardiovascular Mechanics PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Computational Cardiovascular Mechanics PDF full book. Access full book title Computational Cardiovascular Mechanics by Julius M. Guccione. Download full books in PDF and EPUB format.

Computational Cardiovascular Mechanics

Computational Cardiovascular Mechanics PDF Author: Julius M. Guccione
Publisher: Springer Science & Business Media
ISBN: 1441907300
Category : Technology & Engineering
Languages : en
Pages : 335

Book Description
Computational Cardiovascular Mechanics provides a cohesive guide to creating mathematical models for the mechanics of diseased hearts to simulate the effects of current treatments for heart failure. Clearly organized in a two part structure, this volume discusses various areas of computational modeling of cardiovascular mechanics (finite element modeling of ventricular mechanics, fluid dynamics) in addition to a description an analysis of the current applications used (solid FE modeling, CFD). Edited by experts in the field, researchers involved with biomedical and mechanical engineering will find Computational Cardiovascular Mechanics a valuable reference.

Computational Cardiovascular Mechanics

Computational Cardiovascular Mechanics PDF Author: Julius M. Guccione
Publisher: Springer Science & Business Media
ISBN: 1441907300
Category : Technology & Engineering
Languages : en
Pages : 335

Book Description
Computational Cardiovascular Mechanics provides a cohesive guide to creating mathematical models for the mechanics of diseased hearts to simulate the effects of current treatments for heart failure. Clearly organized in a two part structure, this volume discusses various areas of computational modeling of cardiovascular mechanics (finite element modeling of ventricular mechanics, fluid dynamics) in addition to a description an analysis of the current applications used (solid FE modeling, CFD). Edited by experts in the field, researchers involved with biomedical and mechanical engineering will find Computational Cardiovascular Mechanics a valuable reference.

Computational Cardiology

Computational Cardiology PDF Author: Frank B. Sachse
Publisher: Springer
ISBN: 3540259260
Category : Medical
Languages : en
Pages : 364

Book Description
This book is devoted to computer-based modeling in cardiology, by taking an educational point of view, and by summarizing knowledge from several, commonly considered delimited areas of cardiac research in a consistent way. First, the foundations and numerical techniques from mathematics are provided, with a particular focus on the finite element and finite differences methods. Then, the theory of electric fields and continuum mechanics is introduced with respect to numerical calculations in anisotropic biological media. In addition to the presentation of digital image processing techniques, the following chapters deal with particular aspects of cardiac modeling: cardiac anatomy, cardiac electro physiology, cardiac mechanics, modeling of cardiac electro mechanics. This book was written for researchers in modeling and cardiology, for clinical cardiologists, and for advanced students.

Cardiovascular Solid Mechanics

Cardiovascular Solid Mechanics PDF Author: Jay D. Humphrey
Publisher: Springer Science & Business Media
ISBN: 038721576X
Category : Science
Languages : en
Pages : 766

Book Description
This text presents a general introduction to soft tissue biomechanics. One of its primary goals is to introduce basic analytical, experimental and computational methods. In doing so, it enables readers to gain a relatively complete understanding of the biomechanics of the heart and vasculature.

Cardiovascular Mechanics

Cardiovascular Mechanics PDF Author: Michel R. Labrosse
Publisher: CRC Press
ISBN: 1315280280
Category : Medical
Languages : en
Pages : 386

Book Description
The objective of this book is to illustrate in specific detail how cardiovascular mechanics stands as a common pillar supporting such different clinical successes as drugs for high blood pressure, prosthetic heart valves and coronary artery bypass grafting, among others. This information is conveyed through a comprehensive treatment of the overarching principles and theories that are behind mechanobiological processes, aortic and arterial mechanics, atherosclerosis, blood and microcirculation, hear valve mechanics, as well as medical devices and drugs. Examines all major theoretical and practical aspects of mechanical forces related to the cardiovascular system. Discusses a unique coverage of mechanical changes related to an aging cardiovascular system. Provides an overview of experimental methods in cardiovascular mechanics. Written by world-class researchers from Canada, the US and EU. Extensive references are provided at the end of each chapter to enhance further study. Michel R. Labrosse is the founder of the Cardiovascular Mechanics Laboratory at the University of Ottawa, where he is a full professor within the Department of Mechanical Engineering. He has been an active researcher in academia along with being heavily associated with the University of Ottawa Heart Institute. He has authored or co-authored over 90 refereed communications, and supervised or co-supervised over 40 graduate students and post-docs.

Cardiovascular Soft Tissue Mechanics

Cardiovascular Soft Tissue Mechanics PDF Author: Stephen C. Cowin
Publisher: Springer Science & Business Media
ISBN: 1402002203
Category : Mathematics
Languages : en
Pages : 252

Book Description
Cowin (New York Center for Biomedical Engineering) and Humphrey (biomedical engineering, Texas A&M U.) present seven papers that discuss current research and future directions. Topics concern tissues within the cardiovascular system (arteries, the heart, and biaxial testing of planar tissues such as heart valves). Themes include an emphasis on data on the underlying microstructure, especially collagen; the consideration of the fact that both arteries and the heart contain muscle and that there is, therefore, a need to quantify both the active and passive response; constitutive relations for active behavior; and the growth and remodeling of cardiovascular tissues. Of interest to cardiovascular and biomechanics soft tissue researchers, and bioengineers. Annotation copyrighted by Book News, Inc., Portland, OR.

Cardiovascular Biomechanics

Cardiovascular Biomechanics PDF Author: Peter R. Hoskins
Publisher: Springer
ISBN: 3319464078
Category : Medical
Languages : en
Pages : 462

Book Description
This book provides a balanced presentation of the fundamental principles of cardiovascular biomechanics research, as well as its valuable clinical applications. Pursuing an integrated approach at the interface of the life sciences, physics and engineering, it also includes extensive images to explain the concepts discussed. With a focus on explaining the underlying principles, this book examines the physiology and mechanics of circulation, mechanobiology and the biomechanics of different components of the cardiovascular system, in-vivo techniques, in-vitro techniques, and the medical applications of this research. Written for undergraduate and postgraduate students and including sample problems at the end of each chapter, this interdisciplinary text provides an essential introduction to the topic. It is also an ideal reference text for researchers and clinical practitioners, and will benefit a wide range of students and researchers including engineers, physicists, biologists and clinicians who are interested in the area of cardiovascular biomechanics.

Clinical Application of Computational Mechanics to the Cardiovascular System

Clinical Application of Computational Mechanics to the Cardiovascular System PDF Author: T. Yamaguchi
Publisher: Springer Science & Business Media
ISBN: 4431679219
Category : Medical
Languages : en
Pages : 288

Book Description
Vascular diseases, particularly atherosclerosis, are the most frequent and critical underlying fatal disorders in the industrialized world. Cardiovascular deaths are the leading cause of death in the Western world. Although cancer or malignant neoplasms recently have topped the list of causes of deaths in Japan, cardiovascular and cerebrovascular diseases bring about more deaths than cancer if they are reclassified into a unified category of diseases of the vascular system. The National Cardiovascular Center was established by the Ministry of Health and Welfare of Japan to combat cardiovascular and cerebrovascular diseases. Since the Center was opened, we have continued to support basic and clinical sturlies of cardiovascular and cerebrovascular diseases within as weil as outside the Center. Clinical studies that we have supported in modern diagnostic and therapeutic measures against cardio- and cerebrovascular diseases have made remarkable advances in recent years, especially in medical imaging technology including CT and MRI, and in interventional measures including balloon angioplasty and other catheter-based treatments. We are proud of the significant improvement in the overall survival rate and the quality of life of patients suffering from vascular disorders. However, there are still many essential difficulties remaining in the diagnosis and treatment of vascular disorders. Such difficulties necessitate further fundamental studies not only from the practical aspect but also from the integrated perspectives of medicine, biology, and engineering.

Computational And Mathematical Methods In Cardiovascular Physiology

Computational And Mathematical Methods In Cardiovascular Physiology PDF Author: Liang Zhong
Publisher: World Scientific
ISBN: 9813270659
Category : Medical
Languages : en
Pages : 458

Book Description
Cardiovascular diseases (CVD) including heart diseases, peripheral vascular disease and heart failure, account for one-third of deaths throughout the world. CVD risk factors include systolic blood pressure, total cholesterol, high-density lipoprotein cholesterol, and diabetic status. Clinical trials have demonstrated that when modifiable risk factors are treated and corrected, the chances of CVD occurring can be reduced. This illustrates the importance of this book's elaborate coverage of cardiovascular physiology by the application of mathematical and computational methods.This book has literally transformed Cardiovascular Physiology into a STEM discipline, involving (i) quantitative formulations of heart anatomy and physiology, (ii) technologies for imaging the heart and blood vessels, (iii) coronary stenosis hemodynamics measure by means of fractional flow reserve and intervention by grafting and stenting, (iv) fluid mechanics and computational analysis of blood flow in the heart, aorta and coronary arteries, and (v) design of heart valves, percutaneous valve stents, and ventricular assist devices.So how is this mathematically and computationally configured landscape going to impact cardiology and even cardiac surgery? We are now entering a new era of mathematical formulations of anatomy and physiology, leading to technological formulations of medical and surgical procedures towards more precise medicine and surgery. This will entail reformatting of (i) the medical MD curriculum and courses, so as to educate and train a new generation of physicians who are conversant with medical technologies for applying into clinical care, as well as (ii) structuring of MD-PhD (Computational Medicine and Surgery) Program, to train competent medical and surgical specialists in precision medical care and patient-specific surgical care.This book provides a gateway for this new emerging scenario of (i) science and engineering based medical educational curriculum, and (ii) technologically oriented medical and surgical procedures. As such, this book can be usefully employed as a textbook for courses in (i) cardiovascular physiology in both the schools of engineering and medicine of universities, as well as (ii) cardiovascular engineering in biomedical engineering departments worldwide.

Computational Biomechanics

Computational Biomechanics PDF Author: Masao Tanaka
Publisher: Springer Science & Business Media
ISBN: 4431540725
Category : Technology & Engineering
Languages : en
Pages : 207

Book Description
Rapid developments have taken place in biological/biomedical measurement and imaging technologies as well as in computer analysis and information technologies. The increase in data obtained with such technologies invites the reader into a virtual world that represents realistic biological tissue or organ structures in digital form and allows for simulation and what is called “in silico medicine.” This volume is the third in a textbook series and covers both the basics of continuum mechanics of biosolids and biofluids and the theoretical core of computational methods for continuum mechanics analyses. Several biomechanics problems are provided for better understanding of computational modeling and analysis. Topics include the mechanics of solid and fluid bodies, fundamental characteristics of biosolids and biofluids, computational methods in biomechanics analysis/simulation, practical problems in orthopedic biomechanics, dental biomechanics, ophthalmic biomechanics, cardiovascular biomechanics, hemodynamics, cell mechanics, and model-, rule-, and image-based methods in computational biomechanics analysis and simulation. The book is an excellent resource for graduate school-level engineering students and young researchers in bioengineering and biomedicine.

Biomechanics of Soft Tissue in Cardiovascular Systems

Biomechanics of Soft Tissue in Cardiovascular Systems PDF Author: Gerhard A. Holzapfel
Publisher: Springer
ISBN: 370912736X
Category : Technology & Engineering
Languages : en
Pages : 348

Book Description
The book is written by leading experts in the field presenting an up-to-date view of the subject matter in a didactically sound manner. It presents a review of the current knowledge of the behaviour of soft tissues in the cardiovascular system under mechanical loads, and the importance of constitutive laws in understanding the underlying mechanics is highlighted. Cells are also described together with arteries, tendons and ligaments, heart, and other biological tissues of current research interest in biomechanics. This includes experimental, continuum mechanical and computational perspectives, with the emphasis on nonlinear behaviour, and the simulation of mechanical procedures such as balloon angioplasty.