**Author**: Romualdas Skvarcius

**Publisher:**Benjamin-Cummings Publishing Company

**ISBN:**

**Category :**Computers

**Languages :**en

**Pages :**536

**Book Description**

KainStory.com

eBook Download Site [PDF/EPUB/KINDLE]

Mathematics plays a key role in computer science, some researchers would consider computers as nothing but the physical embodiment of mathematical systems. And whether you are designing a digital circuit, a computer program or a new programming language, you need mathematics to be able to reason about the design -- its correctness, robustness and dependability. This book covers the foundational mathematics necessary for courses in computer science. The common approach to presenting mathematical concepts and operators is to define them in terms of properties they satisfy, and then based on these definitions develop ways of computing the result of applying the operators and prove them correct. This book is mainly written for computer science students, so here the author takes a different approach: he starts by defining ways of calculating the results of applying the operators and then proves that they satisfy various properties. After justifying his underlying approach the author offers detailed chapters covering propositional logic, predicate calculus, sets, relations, discrete structures, structured types, numbers, and reasoning about programs. The book contains chapter and section summaries, detailed proofs and many end-of-section exercises -- key to the learning process. The book is suitable for undergraduate and graduate students, and although the treatment focuses on areas with frequent applications in computer science, the book is also suitable for students of mathematics and engineering.

This volume is intended to be used as a textbook for a special topic course in computer science. It addresses contemporary research topics of interest such as intelligent control, genetic algorithms, neural networks, optimization techniques, expert systems, fractals, and computer vision. The work incorporates many new research ideas, and focuses on the role of continuous mathematics. Audience: This book will be valuable to graduate students interested in theoretical computer topics, algorithms, expert systems, neural networks, and software engineering.

This approachable text studies discrete objects and the relationsips that bind them. It helps students understand and apply the power of discrete math to digital computer systems and other modern applications. It provides excellent preparation for courses in linear algebra, number theory, and modern/abstract algebra and for computer science courses in data structures, algorithms, programming languages, compilers, databases, and computation. * Covers all recommended topics in a self-contained, comprehensive, and understandable format for students and new professionals * Emphasizes problem-solving techniques, pattern recognition, conjecturing, induction, applications of varying nature, proof techniques, algorithm development and correctness, and numeric computations * Weaves numerous applications into the text * Helps students learn by doing with a wealth of examples and exercises: - 560 examples worked out in detail - More than 3,700 exercises - More than 150 computer assignments - More than 600 writing projects * Includes chapter summaries of important vocabulary, formulas, and properties, plus the chapter review exercises * Features interesting anecdotes and biographies of 60 mathematicians and computer scientists * Instructor's Manual available for adopters * Student Solutions Manual available separately for purchase (ISBN: 0124211828)

Each chapter of this complement to any course in discrete mathematics examines an application to business, computer science, the sciences, or the social sciences. Students work these chapter-length models using basic concepts of combinatorics, graphs, recursion, relations, logic, probability, and finite state machines.

Several areas of mathematics find application throughout computer science, and all students of computer science need a practical working understanding of them. These core subjects are centred on logic, sets, recursion, induction, relations and functions. The material is often called discrete mathematics, to distinguish it from the traditional topics of continuous mathematics such as integration and differential equations. The central theme of this book is the connection between computing and discrete mathematics. This connection is useful in both directions: • Mathematics is used in many branches of computer science, in applica tions including program specification, datastructures,design and analysis of algorithms, database systems, hardware design, reasoning about the correctness of implementations, and much more; • Computers can help to make the mathematics easier to learn and use, by making mathematical terms executable, making abstract concepts more concrete, and through the use of software tools such as proof checkers. These connections are emphasised throughout the book. Software tools (see Appendix A) enable the computer to serve as a calculator, but instead of just doing arithmetic and trigonometric functions, it will be used to calculate with sets, relations, functions, predicates and inferences. There are also special software tools, for example a proof checker for logical proofs using natural deduction.

This book, in its Second Edition, provides the basic concepts and applications of discrete mathematics and graph theory. The book is aimed at undergraduate students of computer science and engineering, and information technology. It is also suitable for undergraduate and postgraduate students of computer science, mathematics and computer applications. The book exposes the students to fundamental knowledge in: - Mathematical logic, tautology and normal forms - Elementary set theory, functions and their relations - Algebraic structure, binary operation, group theory and homomorphism - Theory of permutations and combinations, binomial and multinomial theorems - Recurrence relations and methods of solving them - Graph theory, spanning tree, Eulerian and Hamiltonian circuits and isomorphism Key Features Includes a large number of worked-out problems for sound understanding of the concepts. Offers chapter-end exercises to test students’ comprehension of theory. Gives a quiz section at the end of each chapter to help students prepare for the competitive examinations. Incorporates short questions asked in universities’ examinations.

Wallis's book on discrete mathematics is a resource for an introductory course in a subject fundamental to both mathematics and computer science, a course that is expected not only to cover certain specific topics but also to introduce students to important modes of thought specific to each discipline . . . Lower-division undergraduates through graduate students. —Choice reviews (Review of the First Edition) Very appropriately entitled as a 'beginner's guide', this textbook presents itself as the first exposure to discrete mathematics and rigorous proof for the mathematics or computer science student. —Zentralblatt Math (Review of the First Edition) This second edition of A Beginner’s Guide to Discrete Mathematics presents a detailed guide to discrete mathematics and its relationship to other mathematical subjects including set theory, probability, cryptography, graph theory, and number theory. This textbook has a distinctly applied orientation and explores a variety of applications. Key Features of the second edition: * Includes a new chapter on the theory of voting as well as numerous new examples and exercises throughout the book * Introduces functions, vectors, matrices, number systems, scientific notations, and the representation of numbers in computers * Provides examples which then lead into easy practice problems throughout the text and full exercise at the end of each chapter * Full solutions for practice problems are provided at the end of the book This text is intended for undergraduates in mathematics and computer science, however, featured special topics and applications may also interest graduate students.