Finite Time and Cooperative Control of Flight Vehicles PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Finite Time and Cooperative Control of Flight Vehicles PDF full book. Access full book title Finite Time and Cooperative Control of Flight Vehicles by Yuanqing Xia. Download full books in PDF and EPUB format.

Finite Time and Cooperative Control of Flight Vehicles

Finite Time and Cooperative Control of Flight Vehicles PDF Author: Yuanqing Xia
Publisher: Springer
ISBN: 9811313733
Category : Technology & Engineering
Languages : en
Pages : 400

Book Description
This book focuses on the finite-time control of attitude stabilization, attitude tracking for individual spacecraft, and finite-time control of attitude synchronization. It discusses formation reconfiguration for multiple spacecraft in complex networks, and provides a new fast nonsingular terminal sliding mode surface (FNTSMS). Further, it presents newly designed controllers and several control laws to enhance the performance of spacecraft systems and meet related demands, such as strong disturbance rejection and high-precision control. As such, the book establishes a fundamental framework for these topics, while also highlighting the importance of integrated analysis. It is a useful resource for all researchers and students who are interested in this field, as well as engineers whose work involves designing flight vehicles.

Finite Time and Cooperative Control of Flight Vehicles

Finite Time and Cooperative Control of Flight Vehicles PDF Author: Yuanqing Xia
Publisher: Springer
ISBN: 9811313733
Category : Technology & Engineering
Languages : en
Pages : 400

Book Description
This book focuses on the finite-time control of attitude stabilization, attitude tracking for individual spacecraft, and finite-time control of attitude synchronization. It discusses formation reconfiguration for multiple spacecraft in complex networks, and provides a new fast nonsingular terminal sliding mode surface (FNTSMS). Further, it presents newly designed controllers and several control laws to enhance the performance of spacecraft systems and meet related demands, such as strong disturbance rejection and high-precision control. As such, the book establishes a fundamental framework for these topics, while also highlighting the importance of integrated analysis. It is a useful resource for all researchers and students who are interested in this field, as well as engineers whose work involves designing flight vehicles.

Fault-Tolerant Cooperative Control of Unmanned Aerial Vehicles

Fault-Tolerant Cooperative Control of Unmanned Aerial Vehicles PDF Author: Ziquan Yu
Publisher: Springer Nature
ISBN: 9819976618
Category : Technology & Engineering
Languages : en
Pages : 226

Book Description
This book focuses on the fault-tolerant cooperative control (FTCC) of multiple unmanned aerial vehicles (multi-UAVs). It provides systematic and comprehensive descriptions of FTCC issues in multi-UAVs concerning faults, external disturbances, strongly unknown nonlinearities, and input saturation. Further, it addresses FTCC design from longitudinal motions to attitude motions, and outer-loop position motions of multi-UAVs. The book’s detailed control schemes can be used to enhance the flight safety of multi-UAVs. As such, the book offers readers an in-depth understanding of UAV safety in cooperative/formation flight and corresponding design methods. The FTCC methods presented here can also provide guidelines for engineers to improve the safety of aerospace engineering systems. The book offers a valuable asset for scientists and researchers, aerospace engineers, control engineers, lecturers and teachers, and graduates and undergraduates in the system and control community, especially those working in the field of UAV cooperation and multi-agent systems.

Advanced Control of Flight Vehicle Maneuver and Operation

Advanced Control of Flight Vehicle Maneuver and Operation PDF Author: Chuang Liu
Publisher: Bentham Science Publishers
ISBN: 9815050036
Category : Technology & Engineering
Languages : en
Pages : 280

Book Description
This book focuses on the advanced controller designs of flight vehicle maneuver and operation. Chapters explain advanced control mechanisms and algorithms for different controllers required in a flight vehicle system. The book topics such as air-disturbance fixed time controllers, algorithms for orbit and attitude computation, adaptive control modes, altitude stabilization, nonlinear vibration control, partial space elevator configuration, controls for formation flying and satellite cluster, respectively. Key features: 1) Includes an investigation of high-precision and high-stability control problems of flight vehicles 2) Multiple complex disturbances are considered to improve robust performance and control accuracy 3)Covers a variety of single spacecraft and distributed space systems (including hypersonic vehicles, flexible aircraft, rigid aircraft, and satellites This book will be helpful to aerospace scientists and engineers who are interested in working on the development of flight vehicle maneuver and operation. Researchers studying control science and engineering, and advanced undergraduate and graduate students and professionals involved in the flight vehicle control field will also benefit from the information given in this book.

Advances in Intelligent Data Analysis and Applications

Advances in Intelligent Data Analysis and Applications PDF Author: Jeng-Shyang Pan
Publisher: Springer Nature
ISBN: 9811650365
Category : Technology & Engineering
Languages : en
Pages : 379

Book Description
This book constitutes the Proceeding of the Sixth International Conference on Intelligent Data Analysis and Applications, October 15–18, 2019, Arad, Romania. This edition is technically co-sponsored by “Aurel Vlaicu” University of Arad, Romania, Southwest Jiaotong University, Fujian University of Technology, Chang’an University, Shandong University of Science and Technology, Fujian Provincial Key Lab of Big Data Mining and Applications, and National Demonstration Center for Experimental Electronic Information and Electrical Technology Education (Fujian University of Technology), China, Romanian Academy, and General Association of Engineers in Romania - Arad Section. The book covers a range of topics: Machine Learning, Intelligent Control, Pattern Recognition, Computational Intelligence, Signal Analysis, Modeling and Visualization, Multimedia Sensing and Sensory Systems, Signal control, Imaging and Processing, Information System Security, Cryptography and Cryptanalysis, Databases and Data Mining, Information Hiding, Cloud Computing, Information Retrieval and Integration, Robotics, Control, Agents, Command, Control, Communication and Computers (C4), Swarming Technology, Sensor Technology, Smart cities. The book offers a timely, board snapshot of new development including trends and challenges that are yielding recent research directions in different areas of intelligent data analysis and applications. The book provides useful information to professors, researchers, and graduated students in area of intelligent data analysis and applications.

Refined Safety Control of Unmanned Flight Vehicles via Fractional-Order Calculus

Refined Safety Control of Unmanned Flight Vehicles via Fractional-Order Calculus PDF Author: Ziquan Yu
Publisher: CRC Press
ISBN: 100383759X
Category : Technology & Engineering
Languages : en
Pages : 249

Book Description
The monograph explores the safety of unmanned flight vehicles via the corresponding fault-tolerant control design methods. The authors analyse the safety control issues of unmanned flight vehicles, which include finite-time recovery against faults, concurrence of actuator faults and sensor faults, concurrence of actuator faults and wind effects, and faults encountered by a portion of unmanned flight vehicles in a distributed communication network. In addition, the commonly used simple but effective proportional-integral-derivative structure is also incorporated into the safety control design for unmanned flight vehicles. By using the fractional-order calculus, the developed safety control results are able to ensure flight safety and achieve the refined performance adjustments against faults and wind effects. The book will be of interest to 3rd/4th year undergraduate students, postgraduate and graduate students, researchers, academic staff, engineers of aircraft and unmanned flight vehicles.

Autonomous Safety Control of Flight Vehicles

Autonomous Safety Control of Flight Vehicles PDF Author: Xiang Yu
Publisher: CRC Press
ISBN: 1000346161
Category : Technology & Engineering
Languages : en
Pages : 143

Book Description
Aerospace vehicles are by their very nature a crucial environment for safety-critical systems. By virtue of an effective safety control system, the aerospace vehicle can maintain high performance despite the risk of component malfunction and multiple disturbances, thereby enhancing aircraft safety and the probability of success for a mission. Autonomous Safety Control of Flight Vehicles presents a systematic methodology for improving the safety of aerospace vehicles in the face of the following occurrences: a loss of control effectiveness of actuators and control surface impairments; the disturbance of observer-based control against multiple disturbances; actuator faults and model uncertainties in hypersonic gliding vehicles; and faults arising from actuator faults and sensor faults. Several fundamental issues related to safety are explicitly analyzed according to aerospace engineering system characteristics; while focusing on these safety issues, the safety control design problems of aircraft are studied and elaborated on in detail using systematic design methods. The research results illustrate the superiority of the safety control approaches put forward. The expected reader group for this book includes undergraduate and graduate students but also industry practitioners and researchers. About the Authors: Xiang Yu is a Professor with the School of Automation Science and Electrical Engineering, Beihang University, Beijing, China. His research interests include safety control of aerospace engineering systems, guidance, navigation, and control of unmanned aerial vehicles. Lei Guo, appointed as "Chang Jiang Scholar Chair Professor", is a Professor with the School of Automation Science and Electrical Engineering, Beihang University, Beijing, China. His research interests include anti-disturbance control and filtering, stochastic control, and fault detection with their applications to aerospace systems. Youmin Zhang is a Professor in the Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, Montreal, Québec, Canada. His research interests include fault diagnosis and fault-tolerant control, and cooperative guidance, navigation, and control (GNC) of unmanned aerial/space/ground/surface vehicles. Jin Jiang is a Professor in the Department of Electrical & Computer Engineering, Western University, London, Ontario, Canada. His research interests include fault-tolerant control of safety-critical systems, advanced control of power plants containing non-traditional energy resources, and instrumentation and control for nuclear power plants.

Robust Formation Control for Multiple Unmanned Aerial Vehicles

Robust Formation Control for Multiple Unmanned Aerial Vehicles PDF Author: Hao Liu
Publisher: CRC Press
ISBN: 1000788504
Category : Technology & Engineering
Languages : en
Pages : 145

Book Description
This book is based on the authors’ recent research results on formation control problems, including time-varying formation, communication delays, fault-tolerant formation for multiple UAV systems with highly nonlinear and coupled, parameter uncertainties, and external disturbances. Differentiating from existing works, this book presents a robust optimal formation approach to designing distributed cooperative control laws for a group of UAVs, based on the linear quadratic regulator control method and the robust compensation theory. The proposed control method is composed of two parts: the nominal part to achieve desired tracking performance and the robust compensation part to restrain the influence of highly nonlinear and strongly coupled parameter uncertainties, and external disturbances on the global closed-loop control system. Furthermore, this book gives proof of their robust properties. The influence of communication delays and actuator fault tolerance can be restrained by the proposed robust formation control protocol, and the formation tracking errors can converge into a neighborhood of the origin bounded by a given constant in a finite time. Moreover, the book provides details about the practical application of the proposed method to design formation control systems for multiple quadrotors and tail-sitters. Additional features include a robust control method that is proposed to address the formation control problem for UAVs and theoretical and experimental research for the cooperative flight of the quadrotor UAV group and the tail-sitter UAV group. Robust Formation Control for Multiple Unmanned Aerial Vehicles is suitable for graduate students, researchers, and engineers in the system and control community, especially those engaged in the areas of robust control, UAV swarming, and multi-agent systems.

Proceedings of 2021 5th Chinese Conference on Swarm Intelligence and Cooperative Control

Proceedings of 2021 5th Chinese Conference on Swarm Intelligence and Cooperative Control PDF Author: Zhang Ren
Publisher: Springer Nature
ISBN: 9811939985
Category : Technology & Engineering
Languages : en
Pages : 1902

Book Description
This book includes original, peer-reviewed research papers from the 2021 5th Chinese Conference on Swarm Intelligence and Cooperative Control (CCSICC2021), held in Shenzhen, China on January 19-22, 2022. The topics covered include but are not limited to: reviews and discussions of swarm intelligence, basic theories on swarm intelligence, swarm communication and networking, swarm perception, awareness and location, swarm decision and planning, cooperative control, cooperative guidance, swarm simulation and assessment. The papers showcased here share the latest findings on theories, algorithms and applications in swarm intelligence and cooperative control, making the book a valuable asset for researchers, engineers, and university students alike.

Advances in Guidance, Navigation and Control

Advances in Guidance, Navigation and Control PDF Author: Liang Yan
Publisher: Springer Nature
ISBN: 9811966133
Category : Technology & Engineering
Languages : en
Pages : 7455

Book Description
This book features the latest theoretical results and techniques in the field of guidance, navigation, and control (GNC) of vehicles and aircrafts. It covers a wide range of topics, including but not limited to, intelligent computing communication and control; new methods of navigation, estimation and tracking; control of multiple moving objects; manned and autonomous unmanned systems; guidance, navigation and control of miniature aircraft; and sensor systems for guidance, navigation and control etc. Presenting recent advances in the form of illustrations, tables, and text, it also provides detailed information of a number of the studies, to offer readers insights for their own research. In addition, the book addresses fundamental concepts and studies in the development of GNC, making it a valuable resource for both beginners and researchers wanting to further their understanding of guidance, navigation, and control.

Time-Critical Cooperative Control of Autonomous Air Vehicles

Time-Critical Cooperative Control of Autonomous Air Vehicles PDF Author: Isaac Kaminer
Publisher: Butterworth-Heinemann
ISBN: 012809947X
Category : Technology & Engineering
Languages : en
Pages : 270

Book Description
Time-Critical Cooperative Control of Autonomous Air Vehicles presents, in an easy-to-read style, the latest research conducted in the industry, while also introducing a set of novel ideas that illuminate a new approach to problem-solving. The book is virtually self-contained, giving the reader a complete, integrated presentation of the different concepts, mathematical tools, and control solutions needed to tackle and solve a number of problems concerning time-critical cooperative control of UAVs. By including case studies of fixed-wing and multirotor UAVs, the book effectively broadens the scope of application of the methodologies developed. This theoretical presentation is complemented with the results of flight tests with real UAVs, and is an ideal reference for researchers and practitioners from academia, research labs, commercial companies, government workers, and those in the international aerospace industry. Addresses important topics related to time-critical cooperative control of UAVs Describes solutions to the problems rooted in solid dynamical systems theory Applies the solutions developed to fixed-wing and multirotor UAVs Includes the results of field tests with both classes of UAVs