Fundamentals of Radiation Materials Science PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Fundamentals of Radiation Materials Science PDF full book. Access full book title Fundamentals of Radiation Materials Science by Gary S. Was. Download full books in PDF and EPUB format.

Fundamentals of Radiation Materials Science

Fundamentals of Radiation Materials Science PDF Author: Gary S. Was
Publisher: Springer Science & Business Media
ISBN: 3540494723
Category : Technology & Engineering
Languages : en
Pages : 827

Book Description
This book is an eye-opening treatise on the fundamentals of the effects of radiation on metals and alloys. When energetic particles strike a solid, numerous processes occur that can change the physical and mechanical properties of the material. Metals and alloys represent an important class of materials that are subject to intense radiation fields. Radiation causes metals and alloys to swell, distort, blister, harden, soften and deform. This textbook and reference covers the basics of particle-atom interaction for a range of particle types, the amount and spatial extent of the resulting radiation damage, the physical effects of irradiation and the changes in mechanical behavior of irradiated metals and alloys.

Fundamentals of Radiation Materials Science

Fundamentals of Radiation Materials Science PDF Author: Gary S. Was
Publisher: Springer Science & Business Media
ISBN: 3540494723
Category : Technology & Engineering
Languages : en
Pages : 827

Book Description
This book is an eye-opening treatise on the fundamentals of the effects of radiation on metals and alloys. When energetic particles strike a solid, numerous processes occur that can change the physical and mechanical properties of the material. Metals and alloys represent an important class of materials that are subject to intense radiation fields. Radiation causes metals and alloys to swell, distort, blister, harden, soften and deform. This textbook and reference covers the basics of particle-atom interaction for a range of particle types, the amount and spatial extent of the resulting radiation damage, the physical effects of irradiation and the changes in mechanical behavior of irradiated metals and alloys.

Fundamentals of Radiation Materials Science

Fundamentals of Radiation Materials Science PDF Author: GARY S. WAS
Publisher: Springer
ISBN: 1493934384
Category : Technology & Engineering
Languages : en
Pages : 1002

Book Description
The revised second edition of this established text offers readers a significantly expanded introduction to the effects of radiation on metals and alloys. It describes the various processes that occur when energetic particles strike a solid, inducing changes to the physical and mechanical properties of the material. Specifically it covers particle interaction with the metals and alloys used in nuclear reactor cores and hence subject to intense radiation fields. It describes the basics of particle-atom interaction for a range of particle types, the amount and spatial extent of the resulting radiation damage, the physical effects of irradiation and the changes in mechanical behavior of irradiated metals and alloys. Updated throughout, some major enhancements for the new edition include improved treatment of low- and intermediate-energy elastic collisions and stopping power, expanded sections on molecular dynamics and kinetic Monte Carlo methodologies describing collision cascade evolution, new treatment of the multi-frequency model of diffusion, numerous examples of RIS in austenitic and ferritic-martensitic alloys, expanded treatment of in-cascade defect clustering, cluster evolution, and cluster mobility, new discussion of void behavior near grain boundaries, a new section on ion beam assisted deposition, and reorganization of hardening, creep and fracture of irradiated materials (Chaps 12-14) to provide a smoother and more integrated transition between the topics. The book also contains two new chapters. Chapter 15 focuses on the fundamentals of corrosion and stress corrosion cracking, covering forms of corrosion, corrosion thermodynamics, corrosion kinetics, polarization theory, passivity, crevice corrosion, and stress corrosion cracking. Chapter 16 extends this treatment and considers the effects of irradiation on corrosion and environmentally assisted corrosion, including the effects of irradiation on water chemistry and the mechanisms of irradiation-induced stress corrosion cracking. The book maintains the previous style, concepts are developed systematically and quantitatively, supported by worked examples, references for further reading and end-of-chapter problem sets. Aimed primarily at students of materials sciences and nuclear engineering, the book will also provide a valuable resource for academic and industrial research professionals. Reviews of the first edition: "...nomenclature, problems and separate bibliography at the end of each chapter allow to the reader to reach a straightforward understanding of the subject, part by part. ... this book is very pleasant to read, well documented and can be seen as a very good introduction to the effects of irradiation on matter, or as a good references compilation for experimented readers." - Pauly Nicolas, Physicalia Magazine, Vol. 30 (1), 2008 “The text provides enough fundamental material to explain the science and theory behind radiation effects in solids, but is also written at a high enough level to be useful for professional scientists. Its organization suits a graduate level materials or nuclear science course... the text was written by a noted expert and active researcher in the field of radiation effects in metals, the selection and organization of the material is excellent... may well become a necessary reference for graduate students and researchers in radiation materials science.” - L.M. Dougherty, 07/11/2008, JOM, the Member Journal of The Minerals, Metals and Materials Society.

An Introduction to Nuclear Materials

An Introduction to Nuclear Materials PDF Author: K. Linga Murty
Publisher: John Wiley & Sons
ISBN: 3527407677
Category : Technology & Engineering
Languages : en
Pages : 400

Book Description
Covering both fundamental and advanced aspects in an accessible way, this textbook begins with an overview of nuclear reactor systems, helping readers to familiarize themselves with the varied designs. Then the readers are introduced to different possibilities for materials applications in the various sections of nuclear energy systems. Materials selection and life prediction methodologies for nuclear reactors are also presented in relation to creep, corrosion and other degradation mechanisms. An appendix compiles useful property data relevant for nuclear reactor applications. Throughout the book, there is a thorough coverage of various materials science principles, such as physical and mechanical metallurgy, defects and diffusion and radiation effects on materials, with serious efforts made to establish structure-property correlations wherever possible. With its emphasis on the latest developments and outstanding problems in the field, this is both a valuable introduction and a ready reference for beginners and experienced practitioners alike.

Neutrons and Synchrotron Radiation in Engineering Materials Science

Neutrons and Synchrotron Radiation in Engineering Materials Science PDF Author: Peter Staron
Publisher: John Wiley & Sons
ISBN: 3527684514
Category : Technology & Engineering
Languages : en
Pages : 488

Book Description
Retaining its proven concept, the second edition of this ready reference specifically addresses the need of materials engineers for reliable, detailed information on modern material characterization methods. As such, it provides a systematic overview of the increasingly important field of characterization of engineering materials with the help of neutrons and synchrotron radiation. The first part introduces readers to the fundamentals of structure-property relationships in materials and the radiation sources suitable for materials characterization. The second part then focuses on such characterization techniques as diffraction and scattering methods, as well as direct imaging and tomography. The third part presents new and emerging methods of materials characterization in the field of 3D characterization techniques like three-dimensional X-ray diffraction microscopy. The fourth and final part is a collection of examples that demonstrate the application of the methods introduced in the first parts to problems in materials science. With thoroughly revised and updated chapters and now containing about 20% new material, this is the must-have, in-depth resource on this highly relevant topic.

Fundamentals of Radiation Chemistry

Fundamentals of Radiation Chemistry PDF Author: A. Mozumder
Publisher: Elsevier
ISBN: 9780080532172
Category : Science
Languages : en
Pages : 392

Book Description
This book describes the physical and chemical effects of radiation interaction with matter. Beginning with the physical basis for the absorption of charged particle radiations, Fundamentals of Radiation Chemistry provides a systematic account of the formation of products, including the nature and properties of intermediate species. Developed from first principles, the coverage of fundamentals and applications will appeal to an interdisciplinary audience of radiation physicists and radiation biologists. Only an undergraduate background in chemistry and physics is assumed as a prerequisite for the understanding of applications in research and industry. Provides a working knowledge of radiation effects for students and non-experts Stresses the role of the electron both as a radiation and as a reactant species Contains clear diagrams of track models Includes a chapter on applications Written by an expert with more than thirty years of experience in a premiere research laboratory Culled from the author's painstaking research of journals and other publications over several decades

Neutrons and Synchrotron Radiation in Engineering Materials Science

Neutrons and Synchrotron Radiation in Engineering Materials Science PDF Author: Walter Reimers
Publisher: John Wiley & Sons
ISBN: 3527621938
Category : Technology & Engineering
Languages : en
Pages : 460

Book Description
Besides its coverage of the four important aspects of synchrotron sources, materials and material processes, measuring techniques, and applications, this ready reference presents both important method types: diffraction and tomography. Following an introduction, a general section leads on to methods, while further sections are devoted to emerging methods and industrial applications. In this way, the text provides new users of large-scale facilities with easy access to an understanding of both the methods and opportunities offered by different sources and instruments.

The Materials Science of Semiconductors

The Materials Science of Semiconductors PDF Author: Angus Rockett
Publisher: Springer Science & Business Media
ISBN: 0387686509
Category : Technology & Engineering
Languages : en
Pages : 622

Book Description
This book describes semiconductors from a materials science perspective rather than from condensed matter physics or electrical engineering viewpoints. It includes discussion of current approaches to organic materials for electronic devices. It further describes the fundamental aspects of thin film nucleation and growth, and the most common physical and chemical vapor deposition techniques. Examples of the application of the concepts in each chapter to specific problems or situations are included, along with recommended readings and homework problems.

Nuclear Energy

Nuclear Energy PDF Author: Raymond Murray
Publisher: Butterworth-Heinemann
ISBN: 9780080919447
Category : Technology & Engineering
Languages : en
Pages : 551

Book Description
Nuclear Energy is one of the most popular texts ever published on basic nuclear physics, systems, and applications of nuclear energy. This newest edition continues the tradition of offering a holistic treatment of everything the undergraduate engineering student needs to know in a clear and accessible way. Presented is a comprehensive overview of radioactivity, radiation protection, nuclear reactors, waste disposal, and nuclear medicine. • New coverage on nuclear safety concerns following 9/11, including radiation and terrorism, nuclear plant security, and use of nuclear techniques to detect weapons materials • New facts on nuclear waste management, including the Yucca Mountain repository • New developments in the use of nuclear-powered systems for generating cheap and abundant hydrogen from water using nuclear technology • New information on prospects for new nuclear power reactors and their applications for electricity and desalination • New end-of-chapter Exercises and Answers, lists of Internet resources, and updated references. • New instructor web site including Solutions to Exercises and PowerPoint slides • New student web site containing computer programs for use with Computer Exercises

Electronic Materials Science

Electronic Materials Science PDF Author: Eugene A. Irene
Publisher: John Wiley & Sons
ISBN: 9780471711636
Category : Science
Languages : en
Pages : 400

Book Description
A thorough introduction to fundamental principles andapplications From its beginnings in metallurgy and ceramics, materials sciencenow encompasses such high- tech fields as microelectronics,polymers, biomaterials, and nanotechnology. Electronic MaterialsScience presents the fundamentals of the subject in a detailedfashion for a multidisciplinary audience. Offering a higher-leveltreatment than an undergraduate textbook provides, this textbenefits students and practitioners not only in electronics andoptical materials science, but also in additional cutting-edgefields like polymers and biomaterials. Readers with a basic understanding of physical chemistry or physicswill appreciate the text's sophisticated presentation of today'smaterials science. Instructive derivations of important formulae,usually omitted in an introductory text, are included here. Thisfeature offers a useful glimpse into the foundations of how thediscipline understands such topics as defects, phase equilibria,and mechanical properties. Additionally, concepts such asreciprocal space, electron energy band theory, and thermodynamicsenter the discussion earlier and in a more robust fashion than inother texts. Electronic Materials Science also features: * An orientation towards industry and academia drawn from theauthor's experience in both arenas * Information on applications in semiconductors, optoelectronics,photocells, and nanoelectronics * Problem sets and important references throughout * Flexibility for various pedagogical needs Treating the subject with more depth than any other introductorytext, Electronic Materials Science prepares graduate andupper-level undergraduate students for advanced topics in thediscipline and gives scientists in associated disciplines a clearreview of the field and its leading technologies.

Radiation Effects in Solids

Radiation Effects in Solids PDF Author: Kurt E. Sickafus
Publisher: Springer Science & Business Media
ISBN: 1402052952
Category : Science
Languages : en
Pages : 593

Book Description
This is a comprehensive overview of fundamental principles and relevant technical issues associated with the behavior of solids exposed to high-energy radiation. These issues are important to the development of materials for existing fission reactors or future fusion and advanced reactors for energy production; to the development of electronic devices such as high-energy detectors; and to the development of novel materials for electronic and photonic applications.