Gauge Fields, Knots and Gravity PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Gauge Fields, Knots and Gravity PDF full book. Access full book title Gauge Fields, Knots and Gravity by John Baez. Download full books in PDF and EPUB format.

Gauge Fields, Knots and Gravity

Gauge Fields, Knots and Gravity PDF Author: John Baez
Publisher: World Scientific Publishing Company
ISBN: 9813103248
Category : Science
Languages : en
Pages : 480

Get Book

Book Description
This is an introduction to the basic tools of mathematics needed to understand the relation between knot theory and quantum gravity. The book begins with a rapid course on manifolds and differential forms, emphasizing how these provide a proper language for formulating Maxwell's equations on arbitrary spacetimes. The authors then introduce vector bundles, connections and curvature in order to generalize Maxwell theory to the Yang-Mills equations. The relation of gauge theory to the newly discovered knot invariants such as the Jones polynomial is sketched. Riemannian geometry is then introduced in order to describe Einstein's equations of general relativity and show how an attempt to quantize gravity leads to interesting applications of knot theory.

Gauge Fields, Knots and Gravity

Gauge Fields, Knots and Gravity PDF Author: John Baez
Publisher: World Scientific Publishing Company
ISBN: 9813103248
Category : Science
Languages : en
Pages : 480

View

Book Description
This is an introduction to the basic tools of mathematics needed to understand the relation between knot theory and quantum gravity. The book begins with a rapid course on manifolds and differential forms, emphasizing how these provide a proper language for formulating Maxwell's equations on arbitrary spacetimes. The authors then introduce vector bundles, connections and curvature in order to generalize Maxwell theory to the Yang-Mills equations. The relation of gauge theory to the newly discovered knot invariants such as the Jones polynomial is sketched. Riemannian geometry is then introduced in order to describe Einstein's equations of general relativity and show how an attempt to quantize gravity leads to interesting applications of knot theory.

The Interface of Knots and Physics

The Interface of Knots and Physics PDF Author: Louis H. Kauffman
Publisher: American Mathematical Soc.
ISBN: 0821803808
Category : Science
Languages : en
Pages : 208

View

Book Description
This book is the result of an AMS Short Course on Knots and Physics that was held in San Francisco (January 1994). The range of the course went beyond knots to the study of invariants of low dimensional manifolds and extensions of this work to four manifolds and to higher dimensions. The authors use ideas and methods of mathematical physics to extract topological information about knots and manifolds. Features: A basic introduction to knot polynomials in relation to statistical link invariants. Concise introductions to topological quantum field theories and to the role of knot theory in quantum gravity. Knots and Physics would be an excellent supplement to a course on algebraic topology or a physics course on field theory.

Modern Differential Geometry in Gauge Theories

Modern Differential Geometry in Gauge Theories PDF Author: Anastasios Mallios
Publisher: Springer Science & Business Media
ISBN: 0817646345
Category : Mathematics
Languages : en
Pages : 234

View

Book Description
Original, well-written work of interest Presents for the first time (physical) field theories written in sheaf-theoretic language Contains a wealth of minutely detailed, rigorous computations, ususally absent from standard physical treatments Author's mastery of the subject and the rigorous treatment of this text make it invaluable

Physics from Finance

Physics from Finance PDF Author: Jakob Schwichtenberg
Publisher: No-Nonsense Books
ISBN:
Category : Science
Languages : en
Pages : 195

View

Book Description
Understanding modern physics doesn’t have to be confusing and hard What if there was an intuitive way to understand how nature fundamentally works? What if there was a book that allowed you to see the whole picture and not just tiny parts of it? Thoughts like this are the reason that Physics from Finance now exists. What will you learn from this book? Get to know all fundamental interactions —Grasp how we can describe electromagnetic interactions, weak interactions, strong interactions and gravity using the same key ideas.Learn how to describe modern physics mathematically — Understand the meaning and origin of the Einstein equation, Maxwell’s equations, and the Schrödinger equation.Develop an intuitive understanding of key concepts — Read how we can understand abstract ideas like Gauge Symmetry, Internal Spaces, Gauge Fields, Connections and Curvature using a simple toy model of the financial market.Get an understanding you can be proud of — Learn why fiber bundles and group theory provide a unified framework for all modern theories of physics. Physics from Finance is the most reader-friendly book on the geometry of modern physics ever written. Here’s why. First of all, it's is nothing like a formal university lecture. Instead, it’s like a casual conservation with a more experienced student. This also means that nothing is assumed to be “obvious” or “easy to see”.Each chapter, each section, and each page focusses solely on the goal to help you understand. Nothing is introduced without a thorough motivation and it is always clear where each formula comes from.The book contains no fluff since unnecessary content quickly leads to confusion. Instead, it ruthlessly focusses on the fundamentals and makes sure you’ll understand them in detail. The primary focus on the readers’ needs is also visible in dozens of small features that you won’t find in any other textbook In total, the book contains more than 100 illustrations that help you understand the most important concepts visually.Whenever a concept is used which was already introduced previously, there is a short sidenote that reminds you where it was first introduced and often recites the main points. In addition, helpful diagrams make sure you won’t get lost.

Geometric, Algebraic and Topological Methods for Quantum Field Theory

Geometric, Algebraic and Topological Methods for Quantum Field Theory PDF Author: Sylvie Payche
Publisher: World Scientific
ISBN: 9814460052
Category : Science
Languages : en
Pages : 378

View

Book Description
Based on lectures held at the 7th Villa de Leyva summer school, this book presents an introduction to topics of current interest in the interface of geometry, topology and physics. It is aimed at graduate students in physics or mathematics with interests in geometric, algebraic as well as topological methods and their applications to quantum field theory. This volume contains the written notes corresponding to lectures given by experts in the field. They cover current topics of research in a way that is suitable for graduate students of mathematics or physics interested in the recent developments and interactions between geometry, topology and physics. The book also contains contributions by younger participants, displaying the ample range of topics treated in the school. A key feature of the present volume is the provision of a pedagogical presentation of rather advanced topics, in a way which is suitable for both mathematicians and physicists.

Geometric, Algebraic and Topological Methods for Quantum Field Theory

Geometric, Algebraic and Topological Methods for Quantum Field Theory PDF Author: Alexander Cardona
Publisher: World Scientific
ISBN: 9814460060
Category : Mathematics
Languages : en
Pages : 380

View

Book Description
Based on lectures held at the 7th Villa de Leyva summer school, this book presents an introduction to topics of current interest in the interface of geometry, topology and physics. It is aimed at graduate students in physics or mathematics with interests in geometric, algebraic as well as topological methods and their applications to quantum field theory. This volume contains the written notes corresponding to lectures given by experts in the field. They cover current topics of research in a way that is suitable for graduate students of mathematics or physics interested in the recent developments and interactions between geometry, topology and physics. The book also contains contributions by younger participants, displaying the ample range of topics treated in the school. A key feature of the present volume is the provision of a pedagogical presentation of rather advanced topics, in a way which is suitable for both mathematicians and physicists. Contents:Lectures:Spectral Geometry (B Iochum)Index Theory for Non-compact G-manifolds (M Braverman and L Cano)Generalized Euler Characteristics, Graph Hypersurfaces, and Feynman Periods (P Aluffi)Gravitation Theory and Chern-Simons Forms (J Zanelli)Noncommutative Geometry Models for Particle Physics (M Marcolli)Noncommutative Spacetimes and Quantum Physics (A P Balachandran)Integrability and the AdS/CFT Correspondence (M Staudacher)Compactifications of String Theory and Generalized Geometry (M Graña and H Triendl)Short Communications:Groupoids and Poisson Sigma Models with Boundary (A Cattaneo and I Contreras)A Survey on Orbifold String Topology (A Angel)Grothendieck Ring Class of Banana and Flower Graphs (P Morales-Almazán)On the Geometry Underlying a Real Lie Algebra Representation (R Vargas Le-Bert) Readership: Researchers in geometry and topology, mathematical physics. Keywords:Geometry;Topology;Geometric Methods;Quantum Field Theory;Renormalization;Index Theory;Noncommutative Geometry;Quantization;String Theory;Key Features:Unique style aimed at a mixed readership of mathematicians and physicistsIdeal for self-study or use in advanced courses or seminars

Natural and Gauge Natural Formalism for Classical Field Theorie

Natural and Gauge Natural Formalism for Classical Field Theorie PDF Author: L. Fatibene
Publisher: Springer Science & Business Media
ISBN: 9401723842
Category : Science
Languages : en
Pages : 365

View

Book Description
In this book the authors develop and work out applications to gravity and gauge theories and their interactions with generic matter fields, including spinors in full detail. Spinor fields in particular appear to be the prototypes of truly gauge-natural objects, which are not purely gauge nor purely natural, so that they are a paradigmatic example of the intriguing relations between gauge natural geometry and physical phenomenology. In particular, the gauge natural framework for spinors is developed in this book in full detail, and it is shown to be fundamentally related to the interaction between fermions and dynamical tetrad gravity.

The Many Faces of Maxwell, Dirac and Einstein Equations

The Many Faces of Maxwell, Dirac and Einstein Equations PDF Author: Waldyr A. Rodrigues
Publisher: Springer Science & Business Media
ISBN: 3540712925
Category : Mathematics
Languages : en
Pages : 445

View

Book Description
This book is a comprehensive reference on differential geometry. It shows that Maxwell, Dirac and Einstein fields, which were originally considered objects of a very different mathematical nature, have representatives as objects of the same mathematical nature. The book also analyzes some foundational issues of relativistic field theories. All calculation procedures are illustrated by many exercises that are solved in detail.

Modifications of Einstein's Theory of Gravity at Large Distances

Modifications of Einstein's Theory of Gravity at Large Distances PDF Author: Eleftherios Papantonopoulos
Publisher: Springer
ISBN: 331910070X
Category : Science
Languages : en
Pages : 426

View

Book Description
In the last few years modified gravity theories have been proposed as extensions of Einstein's theory of gravity. Their main motivation is to explain the latest cosmological and astrophysical data on dark energy and dark matter. The study of general relativity at small scales has already produced important results (cf e.g. LNP 863 Quantum Gravity and Quantum Cosmology) while its study at large scales is challenging because recent and upcoming observational results will provide important information on the validity of these modified theories. In this volume, various aspects of modified gravity at large scales will be discussed: high-curvature gravity theories; general scalar-tensor theories; Galileon theories and their cosmological applications; F(R) gravity theories; massive, new massive and topologically massive gravity; Chern-Simons modifications of general relativity (including holographic variants) and higher-spin gravity theories, to name but a few of the most important recent developments. Edited and authored by leading researchers in the field and cast into the form of a multi-author textbook at postgraduate level, this volume will be of benefit to all postgraduate students and newcomers from neighboring disciplines wishing to find a comprehensive guide for their future research.

Physics from Symmetry

Physics from Symmetry PDF Author: Jakob Schwichtenberg
Publisher: Springer
ISBN: 3319666312
Category : Science
Languages : en
Pages : 287

View

Book Description
This is a textbook that derives the fundamental theories of physics from symmetry. It starts by introducing, in a completely self-contained way, all mathematical tools needed to use symmetry ideas in physics. Thereafter, these tools are put into action and by using symmetry constraints, the fundamental equations of Quantum Mechanics, Quantum Field Theory, Electromagnetism, and Classical Mechanics are derived. As a result, the reader is able to understand the basic assumptions behind, and the connections between the modern theories of physics. The book concludes with first applications of the previously derived equations. Thanks to the input of readers from around the world, this second edition has been purged of typographical errors and also contains several revised sections with improved explanations.