Author: J.R. Sack
Publisher: Elsevier
ISBN: 0080529682
Category : Mathematics
Languages : en
Pages : 1087
Book Description
Computational Geometry is an area that provides solutions to geometric problems which arise in applications including Geographic Information Systems, Robotics and Computer Graphics. This Handbook provides an overview of key concepts and results in Computational Geometry. It may serve as a reference and study guide to the field. Not only the most advanced methods or solutions are described, but also many alternate ways of looking at problems and how to solve them.
Handbook of Computational Geometry
Author: J.R. Sack
Publisher: Elsevier
ISBN: 0080529682
Category : Mathematics
Languages : en
Pages : 1087
Book Description
Computational Geometry is an area that provides solutions to geometric problems which arise in applications including Geographic Information Systems, Robotics and Computer Graphics. This Handbook provides an overview of key concepts and results in Computational Geometry. It may serve as a reference and study guide to the field. Not only the most advanced methods or solutions are described, but also many alternate ways of looking at problems and how to solve them.
Publisher: Elsevier
ISBN: 0080529682
Category : Mathematics
Languages : en
Pages : 1087
Book Description
Computational Geometry is an area that provides solutions to geometric problems which arise in applications including Geographic Information Systems, Robotics and Computer Graphics. This Handbook provides an overview of key concepts and results in Computational Geometry. It may serve as a reference and study guide to the field. Not only the most advanced methods or solutions are described, but also many alternate ways of looking at problems and how to solve them.
Handbook of Discrete and Computational Geometry
Author: Csaba D. Toth
Publisher: CRC Press
ISBN: 1351645919
Category : Computers
Languages : en
Pages : 2354
Book Description
The Handbook of Discrete and Computational Geometry is intended as a reference book fully accessible to nonspecialists as well as specialists, covering all major aspects of both fields. The book offers the most important results and methods in discrete and computational geometry to those who use them in their work, both in the academic world—as researchers in mathematics and computer science—and in the professional world—as practitioners in fields as diverse as operations research, molecular biology, and robotics. Discrete geometry has contributed significantly to the growth of discrete mathematics in recent years. This has been fueled partly by the advent of powerful computers and by the recent explosion of activity in the relatively young field of computational geometry. This synthesis between discrete and computational geometry lies at the heart of this Handbook. A growing list of application fields includes combinatorial optimization, computer-aided design, computer graphics, crystallography, data analysis, error-correcting codes, geographic information systems, motion planning, operations research, pattern recognition, robotics, solid modeling, and tomography.
Publisher: CRC Press
ISBN: 1351645919
Category : Computers
Languages : en
Pages : 2354
Book Description
The Handbook of Discrete and Computational Geometry is intended as a reference book fully accessible to nonspecialists as well as specialists, covering all major aspects of both fields. The book offers the most important results and methods in discrete and computational geometry to those who use them in their work, both in the academic world—as researchers in mathematics and computer science—and in the professional world—as practitioners in fields as diverse as operations research, molecular biology, and robotics. Discrete geometry has contributed significantly to the growth of discrete mathematics in recent years. This has been fueled partly by the advent of powerful computers and by the recent explosion of activity in the relatively young field of computational geometry. This synthesis between discrete and computational geometry lies at the heart of this Handbook. A growing list of application fields includes combinatorial optimization, computer-aided design, computer graphics, crystallography, data analysis, error-correcting codes, geographic information systems, motion planning, operations research, pattern recognition, robotics, solid modeling, and tomography.
Handbook of Discrete and Computational Geometry
Author: Csaba D. Toth
Publisher: CRC Press
ISBN: 9780849385247
Category : Mathematics
Languages : en
Pages : 1008
Book Description
Jacob E. Goodman, co-founder and editor of Discrete & Computational Geometry, the preeminent journal on this area in the international mathematics and computer science community, joins forces with the distinguished computer scientist Joseph O'Rourke and other well-known authorities to produce the definitive handbook on these two interrelated fields. Over the past decade or so, researchers and professionals in discrete geometry and the newer field of computational geometry have developed a highly productive collaborative relationship, where each area benefits from the methods and insights of the other. At the same time that discrete and computational geometry are becoming more closely identified, applications of the results of this work are being used in an increasing number of widely differing areas, from computer graphics and linear programming to manufacturing and robotics. The authors have answered the need for a comprehensive handbook for workers in these and related fields, and for other users of the body of results. While much information can be found on discrete and computational geometry, it is scattered among many sources, and individual books and articles are often narrowly focused. Handbook of Discrete and Computational Geometry brings together, for the first time, all of the major results in both these fields into one volume. Thousands of results - theorems, algorithms, and tables - throughout the volume definitively cover the field, while numerous applications from many different fields demonstrate practical usage. The material is presented clearly enough to assist the novice, but in enough depth to appeal to the specialist. Every technical term is clearly defined in an easy-to-use glossary. Over 200 figures illustrate the concepts presented and provide supporting examples. Information on current geometric software - what it does, how efficiently it does it, and where to find it - is also included.
Publisher: CRC Press
ISBN: 9780849385247
Category : Mathematics
Languages : en
Pages : 1008
Book Description
Jacob E. Goodman, co-founder and editor of Discrete & Computational Geometry, the preeminent journal on this area in the international mathematics and computer science community, joins forces with the distinguished computer scientist Joseph O'Rourke and other well-known authorities to produce the definitive handbook on these two interrelated fields. Over the past decade or so, researchers and professionals in discrete geometry and the newer field of computational geometry have developed a highly productive collaborative relationship, where each area benefits from the methods and insights of the other. At the same time that discrete and computational geometry are becoming more closely identified, applications of the results of this work are being used in an increasing number of widely differing areas, from computer graphics and linear programming to manufacturing and robotics. The authors have answered the need for a comprehensive handbook for workers in these and related fields, and for other users of the body of results. While much information can be found on discrete and computational geometry, it is scattered among many sources, and individual books and articles are often narrowly focused. Handbook of Discrete and Computational Geometry brings together, for the first time, all of the major results in both these fields into one volume. Thousands of results - theorems, algorithms, and tables - throughout the volume definitively cover the field, while numerous applications from many different fields demonstrate practical usage. The material is presented clearly enough to assist the novice, but in enough depth to appeal to the specialist. Every technical term is clearly defined in an easy-to-use glossary. Over 200 figures illustrate the concepts presented and provide supporting examples. Information on current geometric software - what it does, how efficiently it does it, and where to find it - is also included.
Computational Geometry
Author: Mark de Berg
Publisher: Springer Science & Business Media
ISBN: 3662042452
Category : Computers
Languages : en
Pages : 370
Book Description
This introduction to computational geometry focuses on algorithms. Motivation is provided from the application areas as all techniques are related to particular applications in robotics, graphics, CAD/CAM, and geographic information systems. Modern insights in computational geometry are used to provide solutions that are both efficient and easy to understand and implement.
Publisher: Springer Science & Business Media
ISBN: 3662042452
Category : Computers
Languages : en
Pages : 370
Book Description
This introduction to computational geometry focuses on algorithms. Motivation is provided from the application areas as all techniques are related to particular applications in robotics, graphics, CAD/CAM, and geographic information systems. Modern insights in computational geometry are used to provide solutions that are both efficient and easy to understand and implement.
Discrete and Computational Geometry
Author: Satyan L. Devadoss
Publisher: Princeton University Press
ISBN: 1400838983
Category : Mathematics
Languages : en
Pages : 270
Book Description
An essential introduction to discrete and computational geometry Discrete geometry is a relatively new development in pure mathematics, while computational geometry is an emerging area in applications-driven computer science. Their intermingling has yielded exciting advances in recent years, yet what has been lacking until now is an undergraduate textbook that bridges the gap between the two. Discrete and Computational Geometry offers a comprehensive yet accessible introduction to this cutting-edge frontier of mathematics and computer science. This book covers traditional topics such as convex hulls, triangulations, and Voronoi diagrams, as well as more recent subjects like pseudotriangulations, curve reconstruction, and locked chains. It also touches on more advanced material, including Dehn invariants, associahedra, quasigeodesics, Morse theory, and the recent resolution of the Poincaré conjecture. Connections to real-world applications are made throughout, and algorithms are presented independently of any programming language. This richly illustrated textbook also features numerous exercises and unsolved problems. The essential introduction to discrete and computational geometry Covers traditional topics as well as new and advanced material Features numerous full-color illustrations, exercises, and unsolved problems Suitable for sophomores in mathematics, computer science, engineering, or physics Rigorous but accessible An online solutions manual is available (for teachers only)
Publisher: Princeton University Press
ISBN: 1400838983
Category : Mathematics
Languages : en
Pages : 270
Book Description
An essential introduction to discrete and computational geometry Discrete geometry is a relatively new development in pure mathematics, while computational geometry is an emerging area in applications-driven computer science. Their intermingling has yielded exciting advances in recent years, yet what has been lacking until now is an undergraduate textbook that bridges the gap between the two. Discrete and Computational Geometry offers a comprehensive yet accessible introduction to this cutting-edge frontier of mathematics and computer science. This book covers traditional topics such as convex hulls, triangulations, and Voronoi diagrams, as well as more recent subjects like pseudotriangulations, curve reconstruction, and locked chains. It also touches on more advanced material, including Dehn invariants, associahedra, quasigeodesics, Morse theory, and the recent resolution of the Poincaré conjecture. Connections to real-world applications are made throughout, and algorithms are presented independently of any programming language. This richly illustrated textbook also features numerous exercises and unsolved problems. The essential introduction to discrete and computational geometry Covers traditional topics as well as new and advanced material Features numerous full-color illustrations, exercises, and unsolved problems Suitable for sophomores in mathematics, computer science, engineering, or physics Rigorous but accessible An online solutions manual is available (for teachers only)
Computational Geometry
Author: Franco P. Preparata
Publisher: Springer Science & Business Media
ISBN: 1461210984
Category : Mathematics
Languages : en
Pages : 413
Book Description
From the reviews: "This book offers a coherent treatment, at the graduate textbook level, of the field that has come to be known in the last decade or so as computational geometry. ... ... The book is well organized and lucidly written; a timely contribution by two founders of the field. It clearly demonstrates that computational geometry in the plane is now a fairly well-understood branch of computer science and mathematics. It also points the way to the solution of the more challenging problems in dimensions higher than two." #Mathematical Reviews#1 "... This remarkable book is a comprehensive and systematic study on research results obtained especially in the last ten years. The very clear presentation concentrates on basic ideas, fundamental combinatorial structures, and crucial algorithmic techniques. The plenty of results is clever organized following these guidelines and within the framework of some detailed case studies. A large number of figures and examples also aid the understanding of the material. Therefore, it can be highly recommended as an early graduate text but it should prove also to be essential to researchers and professionals in applied fields of computer-aided design, computer graphics, and robotics." #Biometrical Journal#2
Publisher: Springer Science & Business Media
ISBN: 1461210984
Category : Mathematics
Languages : en
Pages : 413
Book Description
From the reviews: "This book offers a coherent treatment, at the graduate textbook level, of the field that has come to be known in the last decade or so as computational geometry. ... ... The book is well organized and lucidly written; a timely contribution by two founders of the field. It clearly demonstrates that computational geometry in the plane is now a fairly well-understood branch of computer science and mathematics. It also points the way to the solution of the more challenging problems in dimensions higher than two." #Mathematical Reviews#1 "... This remarkable book is a comprehensive and systematic study on research results obtained especially in the last ten years. The very clear presentation concentrates on basic ideas, fundamental combinatorial structures, and crucial algorithmic techniques. The plenty of results is clever organized following these guidelines and within the framework of some detailed case studies. A large number of figures and examples also aid the understanding of the material. Therefore, it can be highly recommended as an early graduate text but it should prove also to be essential to researchers and professionals in applied fields of computer-aided design, computer graphics, and robotics." #Biometrical Journal#2
Combinatorial and Computational Geometry
Author: Jacob E. Goodman
Publisher: Cambridge University Press
ISBN: 9780521848626
Category : Computers
Languages : en
Pages : 640
Book Description
This 2005 book deals with interest topics in Discrete and Algorithmic aspects of Geometry.
Publisher: Cambridge University Press
ISBN: 9780521848626
Category : Computers
Languages : en
Pages : 640
Book Description
This 2005 book deals with interest topics in Discrete and Algorithmic aspects of Geometry.
Computational Geometry in C
Author: Joseph O'Rourke
Publisher: Cambridge University Press
ISBN: 110726863X
Category : Computers
Languages : en
Pages : 396
Book Description
This is the revised and expanded 1998 edition of a popular introduction to the design and implementation of geometry algorithms arising in areas such as computer graphics, robotics, and engineering design. The basic techniques used in computational geometry are all covered: polygon triangulations, convex hulls, Voronoi diagrams, arrangements, geometric searching, and motion planning. The self-contained treatment presumes only an elementary knowledge of mathematics, but reaches topics on the frontier of current research, making it a useful reference for practitioners at all levels. The second edition contains material on several new topics, such as randomized algorithms for polygon triangulation, planar point location, 3D convex hull construction, intersection algorithms for ray-segment and ray-triangle, and point-in-polyhedron. The code in this edition is significantly improved from the first edition (more efficient and more robust), and four new routines are included. Java versions for this new edition are also available. All code is accessible from the book's Web site (http://cs.smith.edu/~orourke/) or by anonymous ftp.
Publisher: Cambridge University Press
ISBN: 110726863X
Category : Computers
Languages : en
Pages : 396
Book Description
This is the revised and expanded 1998 edition of a popular introduction to the design and implementation of geometry algorithms arising in areas such as computer graphics, robotics, and engineering design. The basic techniques used in computational geometry are all covered: polygon triangulations, convex hulls, Voronoi diagrams, arrangements, geometric searching, and motion planning. The self-contained treatment presumes only an elementary knowledge of mathematics, but reaches topics on the frontier of current research, making it a useful reference for practitioners at all levels. The second edition contains material on several new topics, such as randomized algorithms for polygon triangulation, planar point location, 3D convex hull construction, intersection algorithms for ray-segment and ray-triangle, and point-in-polyhedron. The code in this edition is significantly improved from the first edition (more efficient and more robust), and four new routines are included. Java versions for this new edition are also available. All code is accessible from the book's Web site (http://cs.smith.edu/~orourke/) or by anonymous ftp.
Suspension Geometry and Computation
Author: John C. Dixon
Publisher: John Wiley & Sons
ISBN: 9780470682890
Category : Technology & Engineering
Languages : en
Pages : 434
Book Description
Revealing suspension geometry design methods in unique detail, John Dixon shows how suspension properties such as bump steer, roll steer, bump camber, compliance steer and roll centres are analysed and controlled by the professional engineer. He emphasizes the physical understanding of suspension parameters in three dimensions and methods of their calculation, using examples, programs and discussion of computational problems. The analytical and design approach taken is a combination of qualitative explanation, for physical understanding, with algebraic analysis of linear and non-linear coefficients, and detailed discussion of computer simulations and related programming methods. Includes a detailed and comprehensive history of suspension and steering system design, fully illustrated with a wealth of diagrams Explains suspension characteristics and suspension geometry coefficients, providing a unique and in-depth understanding of suspension design not found elsewhere. Describes how to obtain desired coefficients and the limitations of particular suspension types, with essential information for suspension designers, chassis technicians and anyone else with an interest in suspension characteristics and vehicle dynamics. Discusses the use of computers in suspension geometry analysis, with programming techniques and examples of suspension solution, including advanced discussion of three-dimensional computational geometry applied to suspension design. Explains in detail the direct and iterative solutions of suspension geometry.
Publisher: John Wiley & Sons
ISBN: 9780470682890
Category : Technology & Engineering
Languages : en
Pages : 434
Book Description
Revealing suspension geometry design methods in unique detail, John Dixon shows how suspension properties such as bump steer, roll steer, bump camber, compliance steer and roll centres are analysed and controlled by the professional engineer. He emphasizes the physical understanding of suspension parameters in three dimensions and methods of their calculation, using examples, programs and discussion of computational problems. The analytical and design approach taken is a combination of qualitative explanation, for physical understanding, with algebraic analysis of linear and non-linear coefficients, and detailed discussion of computer simulations and related programming methods. Includes a detailed and comprehensive history of suspension and steering system design, fully illustrated with a wealth of diagrams Explains suspension characteristics and suspension geometry coefficients, providing a unique and in-depth understanding of suspension design not found elsewhere. Describes how to obtain desired coefficients and the limitations of particular suspension types, with essential information for suspension designers, chassis technicians and anyone else with an interest in suspension characteristics and vehicle dynamics. Discusses the use of computers in suspension geometry analysis, with programming techniques and examples of suspension solution, including advanced discussion of three-dimensional computational geometry applied to suspension design. Explains in detail the direct and iterative solutions of suspension geometry.
Geometric Folding Algorithms
Author: Erik D. Demaine
Publisher: Cambridge University Press
ISBN: 1107394090
Category : Computers
Languages : en
Pages : 388
Book Description
Did you know that any straight-line drawing on paper can be folded so that the complete drawing can be cut out with one straight scissors cut? That there is a planar linkage that can trace out any algebraic curve, or even 'sign your name'? Or that a 'Latin cross' unfolding of a cube can be refolded to 23 different convex polyhedra? Over the past decade, there has been a surge of interest in such problems, with applications ranging from robotics to protein folding. With an emphasis on algorithmic or computational aspects, this treatment gives hundreds of results and over 60 unsolved 'open problems' to inspire further research. The authors cover one-dimensional (1D) objects (linkages), 2D objects (paper), and 3D objects (polyhedra). Aimed at advanced undergraduate and graduate students in mathematics or computer science, this lavishly illustrated book will fascinate a broad audience, from school students to researchers.
Publisher: Cambridge University Press
ISBN: 1107394090
Category : Computers
Languages : en
Pages : 388
Book Description
Did you know that any straight-line drawing on paper can be folded so that the complete drawing can be cut out with one straight scissors cut? That there is a planar linkage that can trace out any algebraic curve, or even 'sign your name'? Or that a 'Latin cross' unfolding of a cube can be refolded to 23 different convex polyhedra? Over the past decade, there has been a surge of interest in such problems, with applications ranging from robotics to protein folding. With an emphasis on algorithmic or computational aspects, this treatment gives hundreds of results and over 60 unsolved 'open problems' to inspire further research. The authors cover one-dimensional (1D) objects (linkages), 2D objects (paper), and 3D objects (polyhedra). Aimed at advanced undergraduate and graduate students in mathematics or computer science, this lavishly illustrated book will fascinate a broad audience, from school students to researchers.