High Temperature Strain of Metals and Alloys PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download High Temperature Strain of Metals and Alloys PDF full book. Access full book title High Temperature Strain of Metals and Alloys by Valim Levitin. Download full books in PDF and EPUB format.

High Temperature Strain of Metals and Alloys

High Temperature Strain of Metals and Alloys PDF Author: Valim Levitin
Publisher: John Wiley & Sons
ISBN: 3527607145
Category : Technology & Engineering
Languages : en
Pages : 180

Book Description
Creep and fatigue are the most prevalent causes of rupture in superalloys, which are important materials for industrial usage, e.g. in engines and turbine blades in aerospace or in energy producing industries. As temperature increases, atom mobility becomes appreciable, affecting a number of metal and alloy properties. It is thus vital to find new characterization methods that allow an understanding of the fundamental physics of creep in these materials as well as in pure metals. Here, the author shows how new in situ X-ray investigations and transmission electron microscope studies lead to novel explanations of high-temperature deformation and creep in pure metals, solid solutions and superalloys. This unique approach is the first to find unequivocal and quantitative expressions for the macroscopic deformation rate by means of three groups of parameters: substructural characteristics, physical material constants and external conditions. Creep strength of the studied up-to-date single crystal superalloys is greatly increased over conventional polycrystalline superalloys. From the contents: - Macroscopic characteristics of strain at high temperatures - Experimental equipment and technique of in situ X-ray investigations - Experimental data and structural parameters in deformed metals - Subboundaries as dislocation sources and obstacles - The physical mechanism of creep and the quantitative structural model - Simulation of the parameters evolution - System of differential equations - High-temperature deformation of industrial superalloys - Single crystals of superalloys - Effect of composition, orientation and temperature on properties - Creep of some refractory metals For materials scientists, solid state physicists, solid state chemists, researchers and practitioners from industry sectors including metallurgical, mechanical, chemical and structural engineers.

High Temperature Strain of Metals and Alloys

High Temperature Strain of Metals and Alloys PDF Author: Valim Levitin
Publisher: John Wiley & Sons
ISBN: 3527607145
Category : Technology & Engineering
Languages : en
Pages : 180

Book Description
Creep and fatigue are the most prevalent causes of rupture in superalloys, which are important materials for industrial usage, e.g. in engines and turbine blades in aerospace or in energy producing industries. As temperature increases, atom mobility becomes appreciable, affecting a number of metal and alloy properties. It is thus vital to find new characterization methods that allow an understanding of the fundamental physics of creep in these materials as well as in pure metals. Here, the author shows how new in situ X-ray investigations and transmission electron microscope studies lead to novel explanations of high-temperature deformation and creep in pure metals, solid solutions and superalloys. This unique approach is the first to find unequivocal and quantitative expressions for the macroscopic deformation rate by means of three groups of parameters: substructural characteristics, physical material constants and external conditions. Creep strength of the studied up-to-date single crystal superalloys is greatly increased over conventional polycrystalline superalloys. From the contents: - Macroscopic characteristics of strain at high temperatures - Experimental equipment and technique of in situ X-ray investigations - Experimental data and structural parameters in deformed metals - Subboundaries as dislocation sources and obstacles - The physical mechanism of creep and the quantitative structural model - Simulation of the parameters evolution - System of differential equations - High-temperature deformation of industrial superalloys - Single crystals of superalloys - Effect of composition, orientation and temperature on properties - Creep of some refractory metals For materials scientists, solid state physicists, solid state chemists, researchers and practitioners from industry sectors including metallurgical, mechanical, chemical and structural engineers.

Fundamentals of Creep in Metals and Alloys

Fundamentals of Creep in Metals and Alloys PDF Author: Michael E. Kassner
Publisher: Elsevier
ISBN: 9780080532141
Category : Technology & Engineering
Languages : en
Pages : 288

Book Description
* Numerous line drawings with consistent format and units allow easy comparison of the behavior of a very wide range of materials * Transmission electron micrographs provide a direct insight in the basic microstructure of metals deforming at high temperatures * Extensive literature review of over 1000 references provide an excellent reference document, and a very balanced discussion Understanding the strength of materials at a range of temperatures is critically important to a huge number of researchers and practitioners from a wide range of fields and industry sectors including metallurgists, industrial designers, aerospace R&D personnel, and structural engineers. The most up-to date and comprehensive book in the field, Fundamentals of Creep in Metals and Alloys discusses the fundamentals of time-dependent plasticity or creep plasticity in metals, alloys and metallic compounds. This is the first book of its kind that provides broad coverage of a range of materials not just a sub-group such as metallic compounds, superalloys or crystals. As such it presents the most balanced view of creep for all materials scientists. The theory of all of these phenomena are extensively reviewed and analysed in view of an extensive bibliography that includes the most recent publications in the field. All sections of the book have undergone extensive peer review and therefore the reader can be sure they have access to the most up-to-date research, fully interrogated, from the world’s leading investigators. · Numerous line drawings with consistent format and units allow easy comparison of the behavior of a very wide range of materials · Transmission electron micrographs provide a direct insight in the basic microstructure of metals deforming at high temperatures · Extensive literature review of over 1000 references provide an excellent reference document, and a very balanced discussion

Creep and High Temperature Deformation of Metals and Alloys

Creep and High Temperature Deformation of Metals and Alloys PDF Author: Stefano Spigarelli
Publisher: MDPI
ISBN: 3039218786
Category : Technology & Engineering
Languages : en
Pages : 212

Book Description
By the late 1940s, and since then, the continuous development of dislocation theories have provided the basis for correlating the macroscopic time-dependent deformation of metals and alloys—known as creep—to the time-dependent processes taking place within the metals and alloys. High-temperature deformation and stress relaxation effects have also been explained and modeled on similar bases. The knowledge of high-temperature deformation as well as its modeling in conventional or unconventional situations is becoming clearer year by year, with new contemporary and better performing high-temperature materials being constantly produced and investigated. This book includes recent contributions covering relevant topics and materials in the field in an innovative way. In the first section, contributions are related to the general description of creep deformation, damage, and ductility, while in the second section, innovative testing techniques of creep deformation are presented. The third section deals with creep in the presence of complex loading/temperature changes and environmental effects, while the last section focuses on material microstructure–creep correlations for specific material classes. The quality and potential of specific materials and microstructures, testing conditions, and modeling as addressed by specific contributions will surely inspire scientists and technicians in their own innovative approaches and studies on creep and high-temperature deformation.

High Temperature Oxidation and Corrosion of Metals

High Temperature Oxidation and Corrosion of Metals PDF Author: David John Young
Publisher: Elsevier
ISBN: 008044587X
Category : Business & Economics
Languages : en
Pages : 593

Book Description
The book is concerned with understanding the fundamental mechanisms of high temperature alloy oxidation. It uses this understanding to develop methods of predicting oxidation rates and the way they change with temperature, gas chemistry and alloy composition. The focus is on designing (or selecting) alloy compositions which provide optimal resistance to attack by corrosive gases. . Emphasises quantitative calculations for predicting reaction rates and the effects of temperature, oxidant activities and alloy compositions. . Uses phase diagrams and diffusion paths to analyse and interpret scale structures and internal precipitation distributions . Provides a detailed examination of corrosion in industrial gases (water vapour effects, carburisation and metal dusting, sulphidation) . Text is well supported by numerous micrographs, phase diagrams and tabulations of relevant thermodynamic and kinetic data . Combines physical chemistry and materials science methodologies.

High-temperature Property Data

High-temperature Property Data PDF Author: Michael F. Rothman
Publisher: ASM International(OH)
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 568

Book Description
This volume organizes information by alloy so that pertinent data can be found easily. Physical and mechanical properties from room temperature to temperatures in excess of 100 C are shown graphically or in tabular form. All data is thoroughly referenced. Now high-temperature property data can be found in one complete reference! Over 200 alloys are organized by AISI number into 11 major sections: Irons, Carbon Steels, Alloy Steels, ASTM Steels, Low Alloy Constructional Steels, Ultra High Strength Steels, Tool Steels, Maraging Steels, Wrought Stainless Steels, Heat Resistant Casting Alloys, and Wrought Iron-Nickel Alloys and Iron-Nickel Superalloys. Each alloy record lists the designation, specifications, UNS number composition product forms and a comment on the high-temperature properties and applications. Data is then given for physical properties such as density, specific heat, thermal conductivity, thermal expansion, electrical conductivity. Poisons ratio, moduli of elasticity and rigidity, etc. Mechanical properties follow, and include tensile properties, shearing and bearing properties, impact properties, creep, stress rupture and stress relaxation, and fatigue properties.The last part of the alloy record gives other effects of temperature, such as hot hardness, corrosion, and growth.

Materials for High Temperature Engineering Applications

Materials for High Temperature Engineering Applications PDF Author: G.W. Meetham
Publisher: Springer Science & Business Media
ISBN: 3642569382
Category : Technology & Engineering
Languages : en
Pages : 164

Book Description
This concise survey describes the requirements on materials operating in high-temperature environments and the processes that increase the temperature capability of metals, ceramics, and composites. The major part deals with the applicable materials and their specific properties, with one entire chapter devoted to coatings. Written for engineering and science students, researchers, and managers in industry.

High-Temperature Behavior of Metals

High-Temperature Behavior of Metals PDF Author: Elisabetta Gariboldi
Publisher: Mdpi AG
ISBN: 9783036521992
Category : Technology & Engineering
Languages : en
Pages : 238

Book Description
The design of new alloys or metal-based composites as well as the optimization of any of the processes involved in high-temperature deformation must take into account the characterization and/or modeling of the high-temperature mechanical responses of the material. This is not a new concept. Nevertheless, there is still much to be done both in terms of data accumulation, specifically for innovative materials, and in terms of material modeling for proper process management, specifically when innovative deformation processes, including more complex time and temperature combinations, are considered. Microstructural changes induced by the process can also severely affect both the further processability of the material as well as its final properties (structural or functional). Similar considerations hold in the case of conventional or innovative metallic materials, where high-temperature deformation occurs due to high-temperature service of the structural components. Thus, knowledge of the effects on the initial microstructure as well as the microstructural changes taking place during in-service deformation are of paramount importance for the optimization of high-temperature structural alloys. This book 'High-Temperature Behavior of Metals' contains contributions dealing with a wide range of metallic materials, illustrating some of the most recent and interesting advances in the field of the high-temperature structural behavior of metallic materials.

Development of High-temperature Strain Gages

Development of High-temperature Strain Gages PDF Author: J. W. Pitts
Publisher:
ISBN:
Category : Cement
Languages : en
Pages : 318

Book Description
A summary is presented of a research program aimed at the improvement of high-temperature strain gages of the electrical resistance type. Potential ceramic and metal components were evaluated and a gage was devised that was based on these evaluations. This gage (NBS 5B) was flexible and easy to install; however, it lacked resistance stability at higher temperatures. In an attempt to minimize this deficiency, ceramic cements were developed that showed greater electrical resistivity than had been previously observed in the range 800 to 1800 degrees Fahrenheit; also, a technique was devised for increasing the resistance to ground by applying a fired-on ceramic coating to the grid of a specifically developed unbacked gage. A study was made of the cause of the erratic response of cemented gages that had not been preheated prior to use. There were strong indications that the erratic response was caused mostly by the rapid decrease in resistance that accompanied structural changes in the cement.

Fundamentals of Creep in Metals and Alloys

Fundamentals of Creep in Metals and Alloys PDF Author: Michael E. Kassner
Publisher: Butterworth-Heinemann
ISBN: 0080994326
Category : Technology & Engineering
Languages : en
Pages : 356

Book Description
Although the present edition of Fundamentals of Creep in Metals and Alloys remains broadly up to date for metals, there are a range of improvements and updates that are either desirable, or required, in order to ensure that the book continues to meet the needs of researchers and scholars in the general area of creep plasticity. Besides updating the areas currently covered in the second edition with recent advances, the third edition will broaden its scope beyond metals and alloys to include ceramics, covalent solids, minerals and polymers, thus addressing the fundamentals of creep in all basic classes of materials. Numerous line drawings with consistent format and units allow easy comparison of the behavior of a very wide range of materials Transmission electron micrographs provide direct insight into the basic microstructure of metals deforming at high temperatures Extensive literature review of about 1000 references provides an excellent overview of the field

Fatigue and Durability of Metals at High Temperatures

Fatigue and Durability of Metals at High Temperatures PDF Author: S. S. Manson
Publisher: ASM International
ISBN: 1615030549
Category : Science
Languages : en
Pages : 277

Book Description
From concept to application, this book describes the method of strain-range partitioning for analyzing time-dependent fatigue. Creep (time-dependent) deformation is first introduced for monotonic and cyclic loading. Multiple chapters then discuss strain-range partitioning in details for multi-axial loading conditions and how different loading permutations can lead to different micro-mechanistic effects. Notably, the total-strain method of strain-range partitioning (SRP) is described, which is a methodology that sees use in several industries. Examples from aerospace illustrate applications, and methods for predicting time-dependent metal fatigue are critiqued.