Author: I.K. Lifanov
Publisher: CRC Press
ISBN: 0203402162
Category : Mathematics
Languages : en
Pages : 416
Book Description
A number of new methods for solving singular and hypersingular integral equations have emerged in recent years. This volume presents some of these new methods along with classical exact, approximate, and numerical methods. The authors explore the analysis of hypersingular integral equations based on the theory of pseudodifferential operators and co
Hypersingular Integral Equations and Their Applications
Author: I.K. Lifanov
Publisher: CRC Press
ISBN: 0203402162
Category : Mathematics
Languages : en
Pages : 416
Book Description
A number of new methods for solving singular and hypersingular integral equations have emerged in recent years. This volume presents some of these new methods along with classical exact, approximate, and numerical methods. The authors explore the analysis of hypersingular integral equations based on the theory of pseudodifferential operators and co
Publisher: CRC Press
ISBN: 0203402162
Category : Mathematics
Languages : en
Pages : 416
Book Description
A number of new methods for solving singular and hypersingular integral equations have emerged in recent years. This volume presents some of these new methods along with classical exact, approximate, and numerical methods. The authors explore the analysis of hypersingular integral equations based on the theory of pseudodifferential operators and co
Hypersingular Integrals and Their Applications
Author: Stefan Samko
Publisher: CRC Press
ISBN: 9780415272681
Category : Mathematics
Languages : en
Pages : 382
Book Description
Hypersingular integrals arise as constructions inverse to potential-type operators and are realized by the methods of regularization and finite differences. This volume develops these approaches in a comprehensive treatment of hypersingular integrals and their applications. The author is a renowned expert on the topic. He explains the basics before building more sophisticated ideas, and his discussions include a description of hypersingular integrals as they relate to functional spaces. Hypersingular Integrals and Their Applications also presents recent results and applications that will prove valuable to graduate students and researchers working in mathematical analysis.
Publisher: CRC Press
ISBN: 9780415272681
Category : Mathematics
Languages : en
Pages : 382
Book Description
Hypersingular integrals arise as constructions inverse to potential-type operators and are realized by the methods of regularization and finite differences. This volume develops these approaches in a comprehensive treatment of hypersingular integrals and their applications. The author is a renowned expert on the topic. He explains the basics before building more sophisticated ideas, and his discussions include a description of hypersingular integrals as they relate to functional spaces. Hypersingular Integrals and Their Applications also presents recent results and applications that will prove valuable to graduate students and researchers working in mathematical analysis.
Topics in Integral and Integro-Differential Equations
Author: Harendra Singh
Publisher: Springer Nature
ISBN: 3030655091
Category : Technology & Engineering
Languages : en
Pages : 255
Book Description
This book includes different topics associated with integral and integro-differential equations and their relevance and significance in various scientific areas of study and research. Integral and integro-differential equations are capable of modelling many situations from science and engineering. Readers should find several useful and advanced methods for solving various types of integral and integro-differential equations in this book. The book is useful for graduate students, Ph.D. students, researchers and educators interested in mathematical modelling, applied mathematics, applied sciences, engineering, etc. Key Features • New and advanced methods for solving integral and integro-differential equations • Contains comparison of various methods for accuracy • Demonstrates the applicability of integral and integro-differential equations in other scientific areas • Examines qualitative as well as quantitative properties of solutions of various types of integral and integro-differential equations
Publisher: Springer Nature
ISBN: 3030655091
Category : Technology & Engineering
Languages : en
Pages : 255
Book Description
This book includes different topics associated with integral and integro-differential equations and their relevance and significance in various scientific areas of study and research. Integral and integro-differential equations are capable of modelling many situations from science and engineering. Readers should find several useful and advanced methods for solving various types of integral and integro-differential equations in this book. The book is useful for graduate students, Ph.D. students, researchers and educators interested in mathematical modelling, applied mathematics, applied sciences, engineering, etc. Key Features • New and advanced methods for solving integral and integro-differential equations • Contains comparison of various methods for accuracy • Demonstrates the applicability of integral and integro-differential equations in other scientific areas • Examines qualitative as well as quantitative properties of solutions of various types of integral and integro-differential equations
Applied Singular Integral Equations
Author: B. N. Mandal
Publisher: CRC Press
ISBN: 1439876215
Category : Mathematics
Languages : en
Pages : 274
Book Description
The book is devoted to varieties of linear singular integral equations, with special emphasis on their methods of solution. It introduces the singular integral equations and their applications to researchers as well as graduate students of this fascinating and growing branch of applied mathematics.
Publisher: CRC Press
ISBN: 1439876215
Category : Mathematics
Languages : en
Pages : 274
Book Description
The book is devoted to varieties of linear singular integral equations, with special emphasis on their methods of solution. It introduces the singular integral equations and their applications to researchers as well as graduate students of this fascinating and growing branch of applied mathematics.
Handbook of Integral Equations
Author: Andrei D. Polyanin
Publisher: CRC Press
ISBN: 0203881052
Category : Mathematics
Languages : en
Pages : 1143
Book Description
Unparalleled in scope compared to the literature currently available, the Handbook of Integral Equations, Second Edition contains over 2,500 integral equations with solutions as well as analytical and numerical methods for solving linear and nonlinear equations. It explores Volterra, Fredholm, WienerHopf, Hammerstein, Uryson, and other equa
Publisher: CRC Press
ISBN: 0203881052
Category : Mathematics
Languages : en
Pages : 1143
Book Description
Unparalleled in scope compared to the literature currently available, the Handbook of Integral Equations, Second Edition contains over 2,500 integral equations with solutions as well as analytical and numerical methods for solving linear and nonlinear equations. It explores Volterra, Fredholm, WienerHopf, Hammerstein, Uryson, and other equa
Integral Equations and Their Applications
Author: Matiur Rahman
Publisher: WIT Press
ISBN: 1845641019
Category : Mathematics
Languages : en
Pages : 385
Book Description
The book deals with linear integral equations, that is, equations involving an unknown function which appears under the integral sign and contains topics such as Abel's integral equation, Volterra integral equations, Fredholm integral integral equations, singular and nonlinear integral equations, orthogonal systems of functions, Green's function as a symmetric kernel of the integral equations.
Publisher: WIT Press
ISBN: 1845641019
Category : Mathematics
Languages : en
Pages : 385
Book Description
The book deals with linear integral equations, that is, equations involving an unknown function which appears under the integral sign and contains topics such as Abel's integral equation, Volterra integral equations, Fredholm integral integral equations, singular and nonlinear integral equations, orthogonal systems of functions, Green's function as a symmetric kernel of the integral equations.
Hypersingular Integrals and Their Applications
Author: Stefan Samko
Publisher: CRC Press
ISBN: 148226496X
Category : Mathematics
Languages : en
Pages : 378
Book Description
Hypersingular integrals arise as constructions inverse to potential-type operators and are realized by the methods of regularization and finite differences. This volume develops these approaches in a comprehensive treatment of hypersingular integrals and their applications. The author is a renowned expert on the topic. He explains the basics before
Publisher: CRC Press
ISBN: 148226496X
Category : Mathematics
Languages : en
Pages : 378
Book Description
Hypersingular integrals arise as constructions inverse to potential-type operators and are realized by the methods of regularization and finite differences. This volume develops these approaches in a comprehensive treatment of hypersingular integrals and their applications. The author is a renowned expert on the topic. He explains the basics before
Integral Equations
Author: Wolfgang Hackbusch
Publisher: Birkhäuser
ISBN: 3034892152
Category : Mathematics
Languages : en
Pages : 377
Book Description
The theory of integral equations has been an active research field for many years and is based on analysis, function theory, and functional analysis. On the other hand, integral equations are of practical interest because of the «boundary integral equation method», which transforms partial differential equations on a domain into integral equations over its boundary. This book grew out of a series of lectures given by the author at the Ruhr-Universitat Bochum and the Christian-Albrecht-Universitat zu Kiel to students of mathematics. The contents of the first six chapters correspond to an intensive lecture course of four hours per week for a semester. Readers of the book require background from analysis and the foundations of numeri cal mathematics. Knowledge of functional analysis is helpful, but to begin with some basic facts about Banach and Hilbert spaces are sufficient. The theoretical part of this book is reduced to a minimum; in Chapters 2, 4, and 5 more importance is attached to the numerical treatment of the integral equations than to their theory. Important parts of functional analysis (e. g. , the Riesz-Schauder theory) are presented without proof. We expect the reader either to be already familiar with functional analysis or to become motivated by the practical examples given here to read a book about this topic. We recall that also from a historical point of view, functional analysis was initially stimulated by the investigation of integral equations.
Publisher: Birkhäuser
ISBN: 3034892152
Category : Mathematics
Languages : en
Pages : 377
Book Description
The theory of integral equations has been an active research field for many years and is based on analysis, function theory, and functional analysis. On the other hand, integral equations are of practical interest because of the «boundary integral equation method», which transforms partial differential equations on a domain into integral equations over its boundary. This book grew out of a series of lectures given by the author at the Ruhr-Universitat Bochum and the Christian-Albrecht-Universitat zu Kiel to students of mathematics. The contents of the first six chapters correspond to an intensive lecture course of four hours per week for a semester. Readers of the book require background from analysis and the foundations of numeri cal mathematics. Knowledge of functional analysis is helpful, but to begin with some basic facts about Banach and Hilbert spaces are sufficient. The theoretical part of this book is reduced to a minimum; in Chapters 2, 4, and 5 more importance is attached to the numerical treatment of the integral equations than to their theory. Important parts of functional analysis (e. g. , the Riesz-Schauder theory) are presented without proof. We expect the reader either to be already familiar with functional analysis or to become motivated by the practical examples given here to read a book about this topic. We recall that also from a historical point of view, functional analysis was initially stimulated by the investigation of integral equations.
Boundary Integral Equations in Elasticity Theory
Author: A.M. Linkov
Publisher: Springer Science & Business Media
ISBN: 9401599149
Category : Science
Languages : en
Pages : 286
Book Description
by the author to the English edition The book aims to present a powerful new tool of computational mechanics, complex variable boundary integral equations (CV-BIE). The book is conceived as a continuation of the classical monograph by N. I. Muskhelishvili into the computer era. Two years have passed since the Russian edition of the present book. We have seen growing interest in numerical simulation of media with internal structure, and have evidence of the potential of the new methods. The evidence was especially clear in problems relating to multiple grains, blocks, cracks, inclusions and voids. This prompted me, when preparing the English edition, to place more emphasis on such topics. The other change was inspired by Professor Graham Gladwell. It was he who urged me to abridge the chain of formulae and to increase the number of examples. Now the reader will find more examples showing the potential and advantages of the analysis. The first chapter of the book contains a simple exposition of the theory of real variable potentials, including the hypersingular potential and the hypersingular equations. This makes up for the absence of such exposition in current textbooks, and reveals important links between the real variable BIE and the complex variable counterparts. The chapter may also help readers who are learning or lecturing on the boundary element method.
Publisher: Springer Science & Business Media
ISBN: 9401599149
Category : Science
Languages : en
Pages : 286
Book Description
by the author to the English edition The book aims to present a powerful new tool of computational mechanics, complex variable boundary integral equations (CV-BIE). The book is conceived as a continuation of the classical monograph by N. I. Muskhelishvili into the computer era. Two years have passed since the Russian edition of the present book. We have seen growing interest in numerical simulation of media with internal structure, and have evidence of the potential of the new methods. The evidence was especially clear in problems relating to multiple grains, blocks, cracks, inclusions and voids. This prompted me, when preparing the English edition, to place more emphasis on such topics. The other change was inspired by Professor Graham Gladwell. It was he who urged me to abridge the chain of formulae and to increase the number of examples. Now the reader will find more examples showing the potential and advantages of the analysis. The first chapter of the book contains a simple exposition of the theory of real variable potentials, including the hypersingular potential and the hypersingular equations. This makes up for the absence of such exposition in current textbooks, and reveals important links between the real variable BIE and the complex variable counterparts. The chapter may also help readers who are learning or lecturing on the boundary element method.
Integral Equations Of First Kind
Author: A V Bitsadze
Publisher: World Scientific
ISBN: 9814500429
Category : Science
Languages : en
Pages : 274
Book Description
This book studies classes of linear integral equations of the first kind most often met in applications. Since the general theory of integral equations of the first kind has not been formed yet, the book considers the equations whose solutions either are estimated in quadratures or can be reduced to well-investigated classes of integral equations of the second kind.In this book the theory of integral equations of the first kind is constructed by using the methods of the theory of functions both of real and complex variables. Special attention is paid to the inversion formulas of model equations most often met in physics, mechanics, astrophysics, chemical physics etc. The general theory of linear equations including the Fredholm, the Noether, the Hausdorff theorems, the Hilbert-Schmidt theorem, the Picard theorem and the application of this theory to the solution of boundary problems are given in this book. The book studies the equations of the first kind with the Schwarz Kernel, the Poisson and the Neumann kernels; the Volterra integral equations of the first kind, the Abel equations and some generalizations, one-dimensional and many-dimensional analogues of the Cauchy type integral and some of their applications.
Publisher: World Scientific
ISBN: 9814500429
Category : Science
Languages : en
Pages : 274
Book Description
This book studies classes of linear integral equations of the first kind most often met in applications. Since the general theory of integral equations of the first kind has not been formed yet, the book considers the equations whose solutions either are estimated in quadratures or can be reduced to well-investigated classes of integral equations of the second kind.In this book the theory of integral equations of the first kind is constructed by using the methods of the theory of functions both of real and complex variables. Special attention is paid to the inversion formulas of model equations most often met in physics, mechanics, astrophysics, chemical physics etc. The general theory of linear equations including the Fredholm, the Noether, the Hausdorff theorems, the Hilbert-Schmidt theorem, the Picard theorem and the application of this theory to the solution of boundary problems are given in this book. The book studies the equations of the first kind with the Schwarz Kernel, the Poisson and the Neumann kernels; the Volterra integral equations of the first kind, the Abel equations and some generalizations, one-dimensional and many-dimensional analogues of the Cauchy type integral and some of their applications.