Introduction to Approximate Solution Techniques, Numerical Modeling, and Finite Element Methods PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Introduction to Approximate Solution Techniques, Numerical Modeling, and Finite Element Methods PDF full book. Access full book title Introduction to Approximate Solution Techniques, Numerical Modeling, and Finite Element Methods by Victor N. Kaliakin. Download full books in PDF and EPUB format.

Introduction to Approximate Solution Techniques, Numerical Modeling, and Finite Element Methods

Introduction to Approximate Solution Techniques, Numerical Modeling, and Finite Element Methods PDF Author: Victor N. Kaliakin
Publisher: CRC Press
ISBN: 1482271125
Category : Technology & Engineering
Languages : en
Pages : 695

Book Description
Functions as a self-study guide for engineers and as a textbook for nonengineering students and engineering students, emphasizing generic forms of differential equations, applying approximate solution techniques to examples, and progressing to specific physical problems in modular, self-contained chapters that integrate into the text or can stand alone! This reference/text focuses on classical approximate solution techniques such as the finite difference method, the method of weighted residuals, and variation methods, culminating in an introduction to the finite element method (FEM). Discusses the general notion of approximate solutions and associated errors! With 1500 equations and more than 750 references, drawings, and tables, Introduction to Approximate Solution Techniques, Numerical Modeling, and Finite Element Methods: Describes the approximate solution of ordinary and partial differential equations using the finite difference method Covers the method of weighted residuals, including specific weighting and trial functions Considers variational methods Highlights all aspects associated with the formulation of finite element equations Outlines meshing of the solution domain, nodal specifications, solution of global equations, solution refinement, and assessment of results Containing appendices that present concise overviews of topics and serve as rudimentary tutorials for professionals and students without a background in computational mechanics, Introduction to Approximate Solution Techniques, Numerical Modeling, and Finite Element Methods is a blue-chip reference for civil, mechanical, structural, aerospace, and industrial engineers, and a practical text for upper-level undergraduate and graduate students studying approximate solution techniques and the FEM.

Introduction to Approximate Solution Techniques, Numerical Modeling, and Finite Element Methods

Introduction to Approximate Solution Techniques, Numerical Modeling, and Finite Element Methods PDF Author: Victor N. Kaliakin
Publisher: CRC Press
ISBN: 1482271125
Category : Technology & Engineering
Languages : en
Pages : 695

Book Description
Functions as a self-study guide for engineers and as a textbook for nonengineering students and engineering students, emphasizing generic forms of differential equations, applying approximate solution techniques to examples, and progressing to specific physical problems in modular, self-contained chapters that integrate into the text or can stand alone! This reference/text focuses on classical approximate solution techniques such as the finite difference method, the method of weighted residuals, and variation methods, culminating in an introduction to the finite element method (FEM). Discusses the general notion of approximate solutions and associated errors! With 1500 equations and more than 750 references, drawings, and tables, Introduction to Approximate Solution Techniques, Numerical Modeling, and Finite Element Methods: Describes the approximate solution of ordinary and partial differential equations using the finite difference method Covers the method of weighted residuals, including specific weighting and trial functions Considers variational methods Highlights all aspects associated with the formulation of finite element equations Outlines meshing of the solution domain, nodal specifications, solution of global equations, solution refinement, and assessment of results Containing appendices that present concise overviews of topics and serve as rudimentary tutorials for professionals and students without a background in computational mechanics, Introduction to Approximate Solution Techniques, Numerical Modeling, and Finite Element Methods is a blue-chip reference for civil, mechanical, structural, aerospace, and industrial engineers, and a practical text for upper-level undergraduate and graduate students studying approximate solution techniques and the FEM.

Introduction to Approximate Solution Techniques, Numerical Modeling, and Finite Element Methods

Introduction to Approximate Solution Techniques, Numerical Modeling, and Finite Element Methods PDF Author: Victor N. Kaliakin
Publisher: CRC Press
ISBN: 135199090X
Category : Technology & Engineering
Languages : en
Pages : 552

Book Description
Functions as a self-study guide for engineers and as a textbook for nonengineering students and engineering students, emphasizing generic forms of differential equations, applying approximate solution techniques to examples, and progressing to specific physical problems in modular, self-contained chapters that integrate into the text or can stand alone! This reference/text focuses on classical approximate solution techniques such as the finite difference method, the method of weighted residuals, and variation methods, culminating in an introduction to the finite element method (FEM). Discusses the general notion of approximate solutions and associated errors! With 1500 equations and more than 750 references, drawings, and tables, Introduction to Approximate Solution Techniques, Numerical Modeling, and Finite Element Methods: Describes the approximate solution of ordinary and partial differential equations using the finite difference method Covers the method of weighted residuals, including specific weighting and trial functions Considers variational methods Highlights all aspects associated with the formulation of finite element equations Outlines meshing of the solution domain, nodal specifications, solution of global equations, solution refinement, and assessment of results Containing appendices that present concise overviews of topics and serve as rudimentary tutorials for professionals and students without a background in computational mechanics, Introduction to Approximate Solution Techniques, Numerical Modeling, and Finite Element Methods is a blue-chip reference for civil, mechanical, structural, aerospace, and industrial engineers, and a practical text for upper-level undergraduate and graduate students studying approximate solution techniques and the FEM.

Finite Elements and Approximation

Finite Elements and Approximation PDF Author: O. C. Zienkiewicz
Publisher: Courier Corporation
ISBN: 048631801X
Category : Technology & Engineering
Languages : en
Pages : 356

Book Description
A powerful tool for the approximate solution of differential equations, the finite element is extensively used in industry and research. This book offers students of engineering and physics a comprehensive view of the principles involved, with numerous illustrative examples and exercises. Starting with continuum boundary value problems and the need for numerical discretization, the text examines finite difference methods, weighted residual methods in the context of continuous trial functions, and piecewise defined trial functions and the finite element method. Additional topics include higher order finite element approximation, mapping and numerical integration, variational methods, and partial discretization and time-dependent problems. A survey of generalized finite elements and error estimates concludes the text.

Approximate Solution Methods in Engineering Mechanics

Approximate Solution Methods in Engineering Mechanics PDF Author: Arthur P. Boresi
Publisher: John Wiley & Sons
ISBN: 9780471402428
Category : Mathematics
Languages : en
Pages : 284

Book Description
The only complete collection of prevalent approximation methods Unlike any other resource, Approximate Solution Methods in Engineering Mechanics, Second Edition offers in-depth coverage of the most common approximate numerical methods used in the solution of physical problems, including those used in popular computer modeling packages. Descriptions of each approximation method are presented with the latest relevant research and developments, providing thorough, working knowledge of the methods and their principles. Approximation methods covered include: * Boundary element method (BEM) * Weighted residuals method * Finite difference method (FDM) * Finite element method (FEM) * Finite strip/layer/prism methods * Meshless method Approximate Solution Methods in Engineering Mechanics, Second Edition is a valuable reference guide for mechanical, aerospace, and civil engineers, as well as students in these disciplines.

Numerical Solution of Partial Differential Equations by the Finite Element Method

Numerical Solution of Partial Differential Equations by the Finite Element Method PDF Author: Claes Johnson
Publisher: Courier Corporation
ISBN: 0486131599
Category : Mathematics
Languages : en
Pages : 290

Book Description
An accessible introduction to the finite element method for solving numeric problems, this volume offers the keys to an important technique in computational mathematics. Suitable for advanced undergraduate and graduate courses, it outlines clear connections with applications and considers numerous examples from a variety of science- and engineering-related specialties.This text encompasses all varieties of the basic linear partial differential equations, including elliptic, parabolic and hyperbolic problems, as well as stationary and time-dependent problems. Additional topics include finite element methods for integral equations, an introduction to nonlinear problems, and considerations of unique developments of finite element techniques related to parabolic problems, including methods for automatic time step control. The relevant mathematics are expressed in non-technical terms whenever possible, in the interests of keeping the treatment accessible to a majority of students.

Finite Element Method

Finite Element Method PDF Author: Păcurar Răzvan
Publisher: BoD – Books on Demand
ISBN: 9535138499
Category : Computers
Languages : en
Pages : 324

Book Description
The book entitled Finite Element Method: Simulation, Numerical Analysis, and Solution Techniques aims to present results of the applicative research performed using FEM in various engineering fields by researchers affiliated to well-known universities. The book has a profound interdisciplinary character and is mainly addressed to researchers, PhD students, graduate and undergraduate students, teachers, engineers, as well as all other readers interested in the engineering applications of FEM. I am confident that readers will find information and challenging topics of high academic and scientific level, which will encourage them to enhance their knowledge in this engineering domain having a continuous expansion. The applications presented in this book cover a broad spectrum of finite element applications starting from mechanical, electrical, or energy production and finishing with the successful simulation of severe meteorological phenomena.

Introduction to the Finite Element Method; a Numerical Method for Engineering Analysis

Introduction to the Finite Element Method; a Numerical Method for Engineering Analysis PDF Author: Chandrakant S. Desai
Publisher: John Wiley & Sons
ISBN: 9780442220839
Category : Technology & Engineering
Languages : en
Pages : 500

Book Description


Finite Element Method

Finite Element Method PDF Author: Sinan Muftu
Publisher: Academic Press
ISBN: 0128232005
Category : Technology & Engineering
Languages : en
Pages : 542

Book Description
Finite Element Method: Physics and Solution Methods aims to provide the reader a sound understanding of the physical systems and solution methods to enable effective use of the finite element method. This book focuses on one- and two-dimensional elasticity and heat transfer problems with detailed derivations of the governing equations. The connections between the classical variational techniques and the finite element method are carefully explained. Following the chapter addressing the classical variational methods, the finite element method is developed as a natural outcome of these methods where the governing partial differential equation is defined over a subsegment (element) of the solution domain. As well as being a guide to thorough and effective use of the finite element method, this book also functions as a reference on theory of elasticity, heat transfer, and mechanics of beams. Covers the detailed physics governing the physical systems and the computational methods that provide engineering solutions in one place, encouraging the reader to conduct fully informed finite element analysis Addresses the methodology for modeling heat transfer, elasticity, and structural mechanics problems Extensive worked examples are provided to help the reader to understand how to apply these methods in practice

Finite Element Method

Finite Element Method PDF Author: Gouri Dhatt
Publisher: John Wiley & Sons
ISBN: 1118569709
Category : Mathematics
Languages : en
Pages : 495

Book Description
This book offers an in-depth presentation of the finite element method, aimed at engineers, students and researchers in applied sciences. The description of the method is presented in such a way as to be usable in any domain of application. The level of mathematical expertise required is limited to differential and matrix calculus. The various stages necessary for the implementation of the method are clearly identified, with a chapter given over to each one: approximation, construction of the integral forms, matrix organization, solution of the algebraic systems and architecture of programs. The final chapter lays the foundations for a general program, written in Matlab, which can be used to solve problems that are linear or otherwise, stationary or transient, presented in relation to applications stemming from the domains of structural mechanics, fluid mechanics and heat transfer.

Computational Methods for Geodynamics

Computational Methods for Geodynamics PDF Author: Alik Ismail-Zadeh
Publisher: Cambridge University Press
ISBN: 1139489356
Category : Science
Languages : en
Pages : 333

Book Description
Written as both a textbook and a handy reference, this text deliberately avoids complex mathematics assuming only basic familiarity with geodynamic theory and calculus. Here, the authors have brought together the key numerical techniques for geodynamic modeling, demonstrations of how to solve problems including lithospheric deformation, mantle convection and the geodynamo. Building from a discussion of the fundamental principles of mathematical and numerical modeling, the text moves into critical examinations of each of the different techniques before concluding with a detailed analysis of specific geodynamic applications. Key differences between methods and their respective limitations are also discussed - showing readers when and how to apply a particular method in order to produce the most accurate results. This is an essential text for advanced courses on numerical and computational modeling in geodynamics and geophysics, and an invaluable resource for researchers looking to master cutting-edge techniques. Links to supplementary computer codes are available online.