Metallic Spintronic Devices

Metallic Spintronic Devices PDF Author: Xiaobin Wang
Publisher: CRC Press
ISBN: 1466588454
Category : Technology & Engineering
Languages : en
Pages : 274

Book Description
Metallic Spintronic Devices provides a balanced view of the present state of the art of metallic spintronic devices, addressing both mainstream and emerging applications from magnetic tunneling junction sensors and spin torque oscillators to spin torque memory and logic. Featuring contributions from well-known and respected industrial and academic experts, this cutting-edge work not only presents the latest research and developments but also: Describes spintronic applications in current and future magnetic recording devices Discusses spin-transfer torque magnetoresistive random-access memory (STT-MRAM) device architectures and modeling Explores prospects of STT-MRAM scaling, such as detailed multilevel cell structure analysis Investigates spintronic device write and read optimization in light of spintronic memristive effects Considers spintronic research directions based on yttrium iron garnet thin films, including spin pumping, magnetic proximity, spin hall, and spin Seebeck effects Proposes unique solutions for low-power spintronic device applications where memory is closely integrated with logic Metallic Spintronic Devices aims to equip anyone who is serious about metallic spintronic devices with up-to-date design, modeling, and processing knowledge. It can be used either by an expert in the field or a graduate student in course curriculum.

Spintronics

Spintronics PDF Author: Claudia Felser
Publisher: Springer Science & Business Media
ISBN: 9048138329
Category : Technology & Engineering
Languages : en
Pages : 369

Book Description
Spintronics is an emerging technology exploiting the spin degree of freedom and has proved to be very promising for new types of fast electronic devices. Amongst the anticipated advantages of spintronics technologies, researchers have identified the non-volatile storage of data with high density and low energy consumption as particularly relevant. This monograph examines the concept of half-metallic compounds perspectives to obtain novel solutions and discusses several oxides such as perovskites, double perovskites and CrO2 as well as Heusler compounds. Such materials can be designed and made with high spin polarization and, especially in the case of Heusler compounds, many material-related problems present in current-day 3d metal systems, can be overcome. Spintronics: From Materials to Devices provides an insight into the current research on Heusler compounds and offers a general understanding of structure–property relationships, including the influence of disorder and correlations on the electronic structure and interfaces. Spintronics devices such as magnetic tunnel junctions (MTJs) and giant magnetoresistance (GMR) devices, with current perpendicular to the plane, in which Co2 based Heusler compounds are used as new electrode materials, are also introduced. From materials design by theoretical methods and the preparation and properties of the materials to the production of thin films and devices, this monograph represents a valuable guide to both novices and experts in the fields of Chemistry, Physics, and Materials Science.

Spintronic Materials and Technology

Spintronic Materials and Technology PDF Author: Yongbing Xu
Publisher: CRC Press
ISBN: 1420021257
Category : Science
Languages : en
Pages : 423

Book Description
Few books exist that cover the hot field of second-generation spintronic devices, despite their potential to revolutionize the IT industry.Compiling the obstacles and progress of spin-controlled devices into one source, Spintronic Materials and Technology presents an in-depth examination of the most recent technological spintronic developments. Featuring contributions from active researchers and leading experts, the book chronicles the main research challenges in spintronics. It first depicts the different classes of materials systems currently under investigation for use in spintronic devices. The contributors also address issues concerning the operation of spintronic devices, such as the new principle for future devices that use spin-polarized current. This promises to enable switching of individual spin components of the device while avoiding crosstalk at the nanoscale. The book concludes with descriptions of both Si and III-V semiconductor-based spin transistors and the integration of spin technology with photonics. The second-generation spintronic devices discussed in Spintronic Materials and Technology will not only improve the existing capabilities of electronic transistors, but will enable future computers to run faster and consume less power.

Magnetism and Accelerator-Based Light Sources

Magnetism and Accelerator-Based Light Sources PDF Author: Hervé Bulou
Publisher: Springer Nature
ISBN: 3030646238
Category : Science
Languages : en
Pages : 208

Book Description
This open access book collects the contributions of the seventh school on Magnetism and Synchrotron Radiation held in Mittelwihr, France, from 7 to 12 October 2018. It starts with an introduction to the physics of modern X-ray sources followed by a general overview of magnetism. Next, light / matter interaction in the X-ray range is covered with emphasis on different types of angular dependence of X-ray absorption spectroscopy and scattering. In the end, two domains where synchrotron radiation-based techniques led to new insights in condensed matter physics, namely spintronics and superconductivity, are discussed. The book is intended for advanced students and researchers to get acquaintance with the basic knowledge of X-ray light sources and to step into synchrotron-based techniques for magnetic studies in condensed matter physics or chemistry.

Recent Advances in Novel Materials for Future Spintronics

Recent Advances in Novel Materials for Future Spintronics PDF Author: Xiaotian Wang
Publisher: MDPI
ISBN: 3038979767
Category : Science
Languages : en
Pages : 152

Book Description
As we all know, electrons carry both charge and spin. The processing of information in conventional electronic devices is based only on the charge of electrons. Spin electronics, or spintronics, uses the spin of electrons, as well as their charge, to process information. Metals, semiconductors, and insulators are the basic materials that constitute the components of electronic devices, and these types of materials have been transforming all aspects of society for over a century. In contrast, magnetic metals, half-metals (including zero-gap half-metals), magnetic semiconductors (including spin-gapless semiconductors), dilute magnetic semiconductors, and magnetic insulators are the materials that will form the basis for spintronic devices. This book aims to collect a range of papers on novel materials that have intriguing physical properties and numerous potential practical applications in spintronics.

Spintronics Handbook, Second Edition: Spin Transport and Magnetism

Spintronics Handbook, Second Edition: Spin Transport and Magnetism PDF Author: Evgeny Y. Tsymbal
Publisher: CRC Press
ISBN: 0429750889
Category : Science
Languages : en
Pages : 670

Book Description
Spintronics Handbook, Second Edition offers an update on the single most comprehensive survey of the two intertwined fields of spintronics and magnetism, covering the diverse array of materials and structures, including silicon, organic semiconductors, carbon nanotubes, graphene, and engineered nanostructures. It focuses on seminal pioneering work, together with the latest in cutting-edge advances, notably extended discussion of two-dimensional materials beyond graphene, topological insulators, skyrmions, and molecular spintronics. The main sections cover physical phenomena, spin-dependent tunneling, control of spin and magnetism in semiconductors, and spin-based applications.

Spin Current

Spin Current PDF Author: Sadamichi Maekawa
Publisher: Oxford University Press
ISBN: 0198787073
Category : Science
Languages : en
Pages : 541

Book Description
In a new branch of physics and technology, called spin-electronics or spintronics, the flow of electrical charge (usual current) as well as the flow of electron spin, the so-called "spin current", are manipulated and controlled together. This book is intended to provide an introduction and guide to the new physics and applications of spin current.

Spin-polarized Currents for Spintronic Devices

Spin-polarized Currents for Spintronic Devices PDF Author: Sebastian von Oehsen
Publisher: Cuvillier Verlag
ISBN: 3867274320
Category :
Languages : en
Pages : 133

Book Description


Recent Progress in Silicon-based Spintronic Materials

Recent Progress in Silicon-based Spintronic Materials PDF Author: L Damewood
Publisher: World Scientific
ISBN: 9814641014
Category : Technology & Engineering
Languages : en
Pages : 164

Book Description
This book covers the crucial aspects of theoretical and experimental approaches for Si-based spintronic materials. The theory parts emphasize on two first-principles methods — the GW method to improve the insulating gaps of the half metals which are a class of materials ideal for spintronic applications, and the linear response theory to calculate electric and magnetic susceptibilities. Three growth methods for doping transition metal elements in alloy and layered forms in Si will be focused on. Also three methods for characterization will be presented emphasizing on how to interpret experimental results. Finally, recent progress made in the Si-based spintronic materials will be discussed. This book is intended for researchers and graduate students who are interested in designing and growing new spintronic materials, in particular, silicon-based. Contents:Spin-Based Materials:IntroductionCrystalsSpin Dependent InteractionsHalf-MetalsMethods of Studying Spintronics:TheoryGrowth MethodsCharacterizationProgress in Si-Based Spintronics:Dilute Doped Mn in SiSi-Based Digital Ferromagnetic HeterostructureSingle Doping of Fe and Mn in SiTrilayersMnSi Clusters Readership: Students and professionals in condensed matter, materials physics, and spintronics. Key Features:The authors explain experimental and theoretical results in terms of physical pictures and hope to promote in depth understanding and to inspire new way of thinkingGraduate students will appreciate experimental results better as the authors show how to interpret the results relevant to what physically happens in the measured systemsWe try to avoid the use of jargon to describle the physical picturesKeywords:Condensed Matter;Spintronics;Silicon-based Materials;Density Functional Theory

Spintronics Handbook, Second Edition: Spin Transport and Magnetism

Spintronics Handbook, Second Edition: Spin Transport and Magnetism PDF Author: Evgeny Y. Tsymbal
Publisher: CRC Press
ISBN: 042980525X
Category : Science
Languages : en
Pages : 555

Book Description
Spintronics Handbook, Second Edition offers an update on the single most comprehensive survey of the two intertwined fields of spintronics and magnetism, covering the diverse array of materials and structures, including silicon, organic semiconductors, carbon nanotubes, graphene, and engineered nanostructures. It focuses on seminal pioneering work, together with the latest in cutting-edge advances, notably extended discussion of two-dimensional materials beyond graphene, topological insulators, skyrmions, and molecular spintronics. The main sections cover physical phenomena, spin-dependent tunneling, control of spin and magnetism in semiconductors, and spin-based applications. Features: Presents the most comprehensive reference text for the overlapping fields of spintronics (spin transport) and magnetism. Covers the full spectrum of materials and structures, from silicon and organic semiconductors to carbon nanotubes, graphene, and engineered nanostructures. Extends coverage of two-dimensional materials beyond graphene, including molybdenum disulfide and study of their spin relaxation mechanisms Includes new dedicated chapters on cutting-edge topics such as spin-orbit torques, topological insulators, half metals, complex oxide materials and skyrmions. Discusses important emerging areas of spintronics with superconductors, spin-wave spintronics, benchmarking of spintronics devices, and theory and experimental approaches to molecular spintronics. Evgeny Tsymbal's research is focused on computational materials science aiming at the understanding of fundamental properties of advanced ferromagnetic and ferroelectric nanostructures and materials relevant to nanoelectronics and spintronics. He is a George Holmes University Distinguished Professor at the Department of Physics and Astronomy of the University of Nebraska-Lincoln (UNL), Director of the UNL’s Materials Research Science and Engineering Center (MRSEC), and Director of the multi-institutional Center for NanoFerroic Devices (CNFD). Igor Žutić received his Ph.D. in theoretical physics at the University of Minnesota. His work spans a range of topics from high-temperature superconductors and ferromagnetism that can get stronger as the temperature is increased, to prediction of various spin-based devices. He is a recipient of 2006 National Science Foundation CAREER Award, 2005 National Research Council/American Society for Engineering Education Postdoctoral Research Award, and the National Research Council Fellowship (2003-2005). His research is supported by the National Science Foundation, the Office of Naval Research, the Department of Energy, and the Airforce Office of Scientific Research.