Nano Technology for Battery Recycling, Remanufacturing, and Reusing PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Nano Technology for Battery Recycling, Remanufacturing, and Reusing PDF full book. Access full book title Nano Technology for Battery Recycling, Remanufacturing, and Reusing by Siamak Farhad. Download full books in PDF and EPUB format.

Nano Technology for Battery Recycling, Remanufacturing, and Reusing

Nano Technology for Battery Recycling, Remanufacturing, and Reusing PDF Author: Siamak Farhad
Publisher: Elsevier
ISBN: 0323984932
Category : Technology & Engineering
Languages : en
Pages : 522

Book Description
Nanotechnology for Battery Recycling, Remanufacturing, and Reusing explores how nanotechnology is currently being used in battery recycling, remanufacturing and reusing technologies to make them economically and environmentally feasible. The book shows how nanotechnology can be used to enhance and improve battery recycling, remanufacturing and reusing technologies, covering the fundamentals of battery recycling, remanufacturing and reusing technologies, the role of nanotechnology, the separation, regeneration and reuse of nanomaterials from battery waste, nano-enabled approaches for battery recycling, and nano-enabled approaches for battery remanufacturing and reusing. This book will help researchers and engineers to better understand the role of nanotechnology in the field of battery recycling, remanufacturing and reusing. It will be an important reference source for materials scientists and engineers who would like to learn more about how nanotechnology is being used to create new battery recycling processes. Outlines practical and cost-efficient processes for recycling and reusing batteries Highlights the different types of nanomaterials used in battery recycling processes Assesses major challenges with integrating nanotechnology into battery manufacturing processes on an industrial scale

Nano Technology for Battery Recycling, Remanufacturing, and Reusing

Nano Technology for Battery Recycling, Remanufacturing, and Reusing PDF Author: Siamak Farhad
Publisher: Elsevier
ISBN: 0323984932
Category : Technology & Engineering
Languages : en
Pages : 522

Book Description
Nanotechnology for Battery Recycling, Remanufacturing, and Reusing explores how nanotechnology is currently being used in battery recycling, remanufacturing and reusing technologies to make them economically and environmentally feasible. The book shows how nanotechnology can be used to enhance and improve battery recycling, remanufacturing and reusing technologies, covering the fundamentals of battery recycling, remanufacturing and reusing technologies, the role of nanotechnology, the separation, regeneration and reuse of nanomaterials from battery waste, nano-enabled approaches for battery recycling, and nano-enabled approaches for battery remanufacturing and reusing. This book will help researchers and engineers to better understand the role of nanotechnology in the field of battery recycling, remanufacturing and reusing. It will be an important reference source for materials scientists and engineers who would like to learn more about how nanotechnology is being used to create new battery recycling processes. Outlines practical and cost-efficient processes for recycling and reusing batteries Highlights the different types of nanomaterials used in battery recycling processes Assesses major challenges with integrating nanotechnology into battery manufacturing processes on an industrial scale

Handbook of Research on Safe Disposal Methods of Municipal Solid Wastes for a Sustainable Environment

Handbook of Research on Safe Disposal Methods of Municipal Solid Wastes for a Sustainable Environment PDF Author: Srivastava, Prateek
Publisher: IGI Global
ISBN: 1668481197
Category : Technology & Engineering
Languages : en
Pages : 444

Book Description
Managing solid waste is one of the biggest challenges in urban areas around the world. Technologically advanced economies generate vast amounts of organic waste materials, many of which are disposed of in landfills. In the future, efficient use of carbon-containing waste and all other waste materials must be increased to reduce the need for virgin raw materials acquisition, including biomass, and reduce carbon emissions to the atmosphere, mitigating climate change. Moreover, expeditious development in information and communications technology (ICT) has made the machines more powerful and efficient, but at the same time, there is a simultaneous decrease in product life leading to an extensive rise in the annual production of e-waste, or electronic waste. Considering the health hazards and environmental implications of e-waste, it has become a global problem that needs serious attention. The Handbook of Research on Safe Disposal Methods of Municipal Solid Wastes for a Sustainable Environment covers waste management principles and strategies in different fields and corresponding applications. The book also focuses on the waste management strategies for a sustainable environment that have emerged. Covering key topics such as waste, energy, and recycling, this premier reference source is an excellent resource for environmentalists, government officials, researchers, scholars, academicians, practitioners, instructors, and students.

Reuse and Recycling of Lithium-Ion Power Batteries

Reuse and Recycling of Lithium-Ion Power Batteries PDF Author: Guangjin Zhao
Publisher: John Wiley & Sons
ISBN: 1119321875
Category : Technology & Engineering
Languages : en
Pages : 432

Book Description
A comprehensive guide to the reuse and recycling of lithium-ion power batteries—fundamental concepts, relevant technologies, and business models Reuse and Recycling of Lithium-Ion Power Batteries explores ways in which retired lithium ion batteries (LIBs) can create long-term, stable profits within a well-designed business operation. Based on a large volume of experimental data collected in the author’s lab, it demonstrates how LIBs reuse can effectively cut the cost of Electric Vehicles (EVs) by extending the service lifetime of the batteries. In addition to the cost benefits, Dr. Guangjin Zhao discusses how recycling and reuse can significantly reduce environmental and safety hazards, thus complying with the core principles of environment protection: recycle, reuse and reduce. Offering coverage of both the fundamental theory and applied technologies involved in LIB reuse and recycling, the book's contents are based on the simulated and experimental results of a hybrid micro-grid demonstration project and recycling system. In the opening section on battery reuse, Dr. Zhao introduces key concepts, including battery dismantling, sorting, second life prediction, re-packing, system integration and relevant technologies. He then builds on that foundation to explore advanced topics, such as resource recovery, harmless treatment, secondary pollution control, and zero emissions technologies. Reuse and Recycling of Lithium-Ion Power Batteries: • Provides timely, in-depth coverage of both the reuse and recycling aspects of lithium-ion batteries • Is based on extensive simulation and experimental research performed by the author, as well as an extensive review of the current literature on the subject • Discusses the full range of critical issues, from battery dismantling and sorting to secondary pollution control and zero emissions technologies • Includes business models and strategies for secondary use and recycling of power lithium-ion batteries Reuse and Recycling of Lithium-Ion Power Batteries is an indispensable resource for researchers, engineers, and business professionals who work in industries involved in energy storage systems and battery recycling, especially with the manufacture and use (and reuse) of lithium-ion batteries. It is also a valuable supplementary text for advanced undergraduates and postgraduate students studying energy storage, battery recycling, and battery management.

Remanufacturing, Repurposing, and Recycling of Post-vehicle-application Lithium-ion Batteries

Remanufacturing, Repurposing, and Recycling of Post-vehicle-application Lithium-ion Batteries PDF Author: Charles R. Standridge
Publisher:
ISBN:
Category : Electric automobiles
Languages : en
Pages : 0

Book Description
As lithium-ion batteries are an efficient energy storage mechanism, their use in vehicles is increasing to support electrification to meet increasing average mileage and decreasing greenhouse gas emission standards. Principles of environmentalism and sustainability suggest the development of processes for the remanufacturing, repurposing, and recycling of post-vehicle-application lithium-ion batteries. Proprietary commercial processes for remanufacturing for reuse in vehicles require safe battery testing that is supported by a newly developed workbench. Repurposing, with a focus on stationary energy storage applications and the development of battery management systems, is demonstrated. Recycling to recover the battery component materials using manual disassembly and acid leaching at relatively low temperatures and in short time periods is shown to be effective. A cost benefit-analysis shows that remanufacturing is profitable. Repurposing is profitable if the development cost is no more than $83/kWh to $114/kWh, depending on research and development expenses. Recycling, driven by environmental and sustainability principles, is not profitable in isolation. The cost of recycling must be borne by remanufacturing and repurposing. A forecasting model shows that the number of post-vehicle-application lithium-ion batteries will be sufficient to support remanufacturing, repurposing, and recycling.

Recycling of Power Lithium-Ion Batteries

Recycling of Power Lithium-Ion Batteries PDF Author: Xiao Lin
Publisher: John Wiley & Sons
ISBN: 3527839895
Category : Technology & Engineering
Languages : en
Pages : 276

Book Description
Recycling of Power Lithium-Ion Batteries Explore the past, present, and future of power lithium-ion battery recycling, from the governing regulatory framework to predictions of the future of the industry In Recycling of Power Lithium-Ion Batteries: Technology, Equipment, and Policies, a team of distinguished researchers and engineers delivers an authoritative and illuminating exploration of the industrial status and development trends in the global power lithium-ion battery sector. The book examines the development of advanced battery materials and new recycling technologies, as well as typical case studies in enterprise battery recycling. The authors provide a roadmap to the development of spent power battery recycling enterprises that can provide support to the sustainable development industry. Recycling of Power Lithium-Ion Batteries discusses a wide variety of topics with immediate applications to modern industry, including new application scenarios for power lithium-ion batteries, as well as an examination of the laws, regulations, and standards governing battery recycling. Readers will also find: A thorough introduction to the status and development of the lithium-ion battery and its key materials Fulsome discussions of battery recycling technologies and equipment, including pre-treatment technology for battery recycling Comprehensive explorations of the life cycle of power lithium-ion batteries and the impact of battery recycling Expansive treatments of the technology outlook in the lithium-ion battery space, including green battery design and recovery systems Perfect for materials scientists, environmental chemists, and power technology engineers, Recycling of Power Lithium-Ion Batteries: Technology, Equipment, and Policies will also earn a place in the libraries of chemical and process engineers, electrochemists, and professionals working at waste disposal sites.

Nanotechnology for Lithium-Ion Batteries

Nanotechnology for Lithium-Ion Batteries PDF Author: Yaser Abu-Lebdeh
Publisher: Springer Science & Business Media
ISBN: 1461446058
Category : Science
Languages : en
Pages : 288

Book Description
This book combines two areas of intense interest: nanotechnology, and energy conversion and storage devices. In particular, Li-ion batteries have enjoyed conspicuous success in many consumer electronic devices and their projected use in vehicles that will revolutionize the way we travel in the near future. For many applications, Li-ion batteries are the battery of choice. This book consolidates the scattered developments in all areas of research related to nanotechnology and lithium ion batteries.

Waste Electrical and Electronic Equipment Recycling

Waste Electrical and Electronic Equipment Recycling PDF Author: Francesco Vegliò
Publisher: Woodhead Publishing
ISBN: 0081020589
Category : Technology & Engineering
Languages : en
Pages : 428

Book Description
Water Electrical and Electronic Equipment Recycling: Aqueous Recovery Methods provides data regarding the implementation of aqueous methods of processing of WEEEs at the industrial level. Chapters explore points-of-view of worldwide researchers and research project managers with respect to new research developments and how to improve processing technologies. The text is divided into two parts, with the first section addressing the new research regarding the hydrometallurgical procedures adopted from minerals processing technologies. Other sections cover green chemistry, bio-metallurgy applications for WEEE treatment and the current developed aqueous methods at industrial scale. A conclusion summarizes existing research with suggestions for future actions. Provides a one-stop reference for hydrometallurgical processes of metal recovery from WEEE Includes methods presented through intended applications, including waste printed circuit boards, LCD panels, lighting and more Contains suggestions and recommendations for future actions and research prospects

Recycling of Spent Lithium-Ion Batteries

Recycling of Spent Lithium-Ion Batteries PDF Author: Liang An
Publisher: Springer Nature
ISBN: 3030318346
Category : Technology & Engineering
Languages : en
Pages : 217

Book Description
​This book presents a state-of-the-art review of recent advances in the recycling of spent lithium-ion batteries. The topics covered include: introduction to the structure of lithium-ion batteries; development of battery-powered electric vehicles; potential environmental impact of spent lithium-ion batteries; pretreatment of spent lithium-ion batteries for recycling processing; pyrometallurgical processing for recycling spent lithium-ion batteries; hydrometallurgical processing for recycling spent lithium-ion batteries; direct processing for recycling spent lithium-ion batteries; high value-added products from recycling of spent lithium-ion batteries; and effects of recycling of spent lithium-ion batteries on environmental burdens. The book provides an essential reference resource for professors, researchers, and policymakers in academia, industry, and government around the globe.

Recycling of Lithium-Ion Batteries

Recycling of Lithium-Ion Batteries PDF Author: Arno Kwade
Publisher: Springer
ISBN: 3319705725
Category : Technology & Engineering
Languages : en
Pages : 288

Book Description
This book addresses recycling technologies for many of the valuable and scarce materials from spent lithium-ion batteries. A successful transition to electric mobility will result in large volumes of these. The book discusses engineering issues in the entire process chain from disassembly over mechanical conditioning to chemical treatment. A framework for environmental and economic evaluation is presented and recommendations for researchers as well as for potential operators are derived.

The Handbook of Lithium-Ion Battery Pack Design

The Handbook of Lithium-Ion Battery Pack Design PDF Author: John T Warner
Publisher: Elsevier
ISBN: 012801668X
Category : Science
Languages : en
Pages : 262

Book Description
The Handbook of Lithium-Ion Battery Pack Design: Chemistry, Components, Types and Terminology offers to the reader a clear and concise explanation of how Li-ion batteries are designed from the perspective of a manager, sales person, product manager or entry level engineer who is not already an expert in Li-ion battery design. It will offer a layman’s explanation of the history of vehicle electrification, what the various terminology means, and how to do some simple calculations that can be used in determining basic battery sizing, capacity, voltage and energy. By the end of this book the reader has a solid understanding of all of the terminology around Li-ion batteries and is able to do some simple battery calculations. The book is immensely useful to beginning and experienced engineer alike who are moving into the battery field. Li-ion batteries are one of the most unique systems in automobiles today in that they combine multiple engineering disciplines, yet most engineering programs focus on only a single engineering field. This book provides you with a reference to the history, terminology and design criteria needed to understand the Li-ion battery and to successfully lay out a new battery concept. Whether you are an electrical engineer, a mechanical engineer or a chemist this book helps you better appreciate the inter-relationships between the various battery engineering fields that are required to understand the battery as an Energy Storage System. Offers an easy explanation of battery terminology and enables better understanding of batteries, their components and the market place. Demonstrates simple battery scaling calculations in an easy to understand description of the formulas Describes clearly the various components of a Li-ion battery and their importance Explains the differences between various Li-ion cell types and chemistries and enables the determination which chemistry and cell type is appropriate for which application Outlines the differences between battery types, e.g., power vs energy battery Presents graphically different vehicle configurations: BEV, PHEV, HEV Includes brief history of vehicle electrification and its future