Numerical Continuation and Bifurcation in Nonlinear PDEs PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Numerical Continuation and Bifurcation in Nonlinear PDEs PDF full book. Access full book title Numerical Continuation and Bifurcation in Nonlinear PDEs by Hannes Uecker. Download full books in PDF and EPUB format.

Numerical Continuation and Bifurcation in Nonlinear PDEs

Numerical Continuation and Bifurcation in Nonlinear PDEs PDF Author: Hannes Uecker
Publisher: SIAM
ISBN: 1611976618
Category : Mathematics
Languages : en
Pages : 380

Book Description
This book provides a hands-on approach to numerical continuation and bifurcation for nonlinear PDEs in 1D, 2D, and 3D. Partial differential equations (PDEs) are the main tool to describe spatially and temporally extended systems in nature. PDEs usually come with parameters, and the study of the parameter dependence of their solutions is an important task. Letting one parameter vary typically yields a branch of solutions, and at special parameter values, new branches may bifurcate. After a concise review of some analytical background and numerical methods, the author explains the free MATLAB package pde2path by using a large variety of examples with demo codes that can be easily adapted to the reader's given problem. Numerical Continuation and Bifurcation in Nonlinear PDEs will appeal to applied mathematicians and scientists from physics, chemistry, biology, and economics interested in the numerical solution of nonlinear PDEs, particularly the parameter dependence of solutions. It can be used as a supplemental text in courses on nonlinear PDEs and modeling and bifurcation.

Numerical Continuation and Bifurcation in Nonlinear PDEs

Numerical Continuation and Bifurcation in Nonlinear PDEs PDF Author: Hannes Uecker
Publisher: SIAM
ISBN: 1611976618
Category : Mathematics
Languages : en
Pages : 380

Book Description
This book provides a hands-on approach to numerical continuation and bifurcation for nonlinear PDEs in 1D, 2D, and 3D. Partial differential equations (PDEs) are the main tool to describe spatially and temporally extended systems in nature. PDEs usually come with parameters, and the study of the parameter dependence of their solutions is an important task. Letting one parameter vary typically yields a branch of solutions, and at special parameter values, new branches may bifurcate. After a concise review of some analytical background and numerical methods, the author explains the free MATLAB package pde2path by using a large variety of examples with demo codes that can be easily adapted to the reader's given problem. Numerical Continuation and Bifurcation in Nonlinear PDEs will appeal to applied mathematicians and scientists from physics, chemistry, biology, and economics interested in the numerical solution of nonlinear PDEs, particularly the parameter dependence of solutions. It can be used as a supplemental text in courses on nonlinear PDEs and modeling and bifurcation.

Introduction to Numerical Continuation Methods

Introduction to Numerical Continuation Methods PDF Author: Eugene L. Allgower
Publisher: SIAM
ISBN: 089871544X
Category : Mathematics
Languages : en
Pages : 409

Book Description
Numerical continuation methods have provided important contributions toward the numerical solution of nonlinear systems of equations for many years. The methods may be used not only to compute solutions, which might otherwise be hard to obtain, but also to gain insight into qualitative properties of the solutions. Introduction to Numerical Continuation Methods, originally published in 1979, was the first book to provide easy access to the numerical aspects of predictor corrector continuation and piecewise linear continuation methods. Not only do these seemingly distinct methods share many common features and general principles, they can be numerically implemented in similar ways. Introduction to Numerical Continuation Methods also features the piecewise linear approximation of implicitly defined surfaces, the algorithms of which are frequently used in computer graphics, mesh generation, and the evaluation of surface integrals.

Numerical Continuation Methods for Dynamical Systems

Numerical Continuation Methods for Dynamical Systems PDF Author: Bernd Krauskopf
Publisher: Springer
ISBN: 1402063563
Category : Science
Languages : en
Pages : 399

Book Description
Path following in combination with boundary value problem solvers has emerged as a continuing and strong influence in the development of dynamical systems theory and its application. It is widely acknowledged that the software package AUTO - developed by Eusebius J. Doedel about thirty years ago and further expanded and developed ever since - plays a central role in the brief history of numerical continuation. This book has been compiled on the occasion of Sebius Doedel's 60th birthday. Bringing together for the first time a large amount of material in a single, accessible source, it is hoped that the book will become the natural entry point for researchers in diverse disciplines who wish to learn what numerical continuation techniques can achieve. The book opens with a foreword by Herbert B. Keller and lecture notes by Sebius Doedel himself that introduce the basic concepts of numerical bifurcation analysis. The other chapters by leading experts discuss continuation for various types of systems and objects and showcase examples of how numerical bifurcation analysis can be used in concrete applications. Topics that are treated include: interactive continuation tools, higher-dimensional continuation, the computation of invariant manifolds, and continuation techniques for slow-fast systems, for symmetric Hamiltonian systems, for spatially extended systems and for systems with delay. Three chapters review physical applications: the dynamics of a SQUID, global bifurcations in laser systems, and dynamics and bifurcations in electronic circuits.

Continuation and Bifurcations: Numerical Techniques and Applications

Continuation and Bifurcations: Numerical Techniques and Applications PDF Author: Dirk Roose
Publisher: Springer Science & Business Media
ISBN: 9400906595
Category : Mathematics
Languages : en
Pages : 415

Book Description
Proceedings of the NATO Advanced Research Workshop, Leuven, Belgium, September 18-22, 1989

Numerical Methods for Bifurcations of Dynamical Equilibria

Numerical Methods for Bifurcations of Dynamical Equilibria PDF Author: Willy J. F. Govaerts
Publisher: SIAM
ISBN: 9780898719543
Category : Mathematics
Languages : en
Pages : 384

Book Description
Dynamical systems arise in all fields of applied mathematics. The author focuses on the description of numerical methods for the detection, computation, and continuation of equilibria and bifurcation points of equilibria of dynamical systems. This subfield has the particular attraction of having links with the geometric theory of differential equations, numerical analysis, and linear algebra.

Numerical Continuation Methods

Numerical Continuation Methods PDF Author: Eugene L. Allgower
Publisher: Springer Science & Business Media
ISBN: 3642612571
Category : Mathematics
Languages : en
Pages : 402

Book Description
Over the past fifteen years two new techniques have yielded extremely important contributions toward the numerical solution of nonlinear systems of equations. This book provides an introduction to and an up-to-date survey of numerical continuation methods (tracing of implicitly defined curves) of both predictor-corrector and piecewise-linear types. It presents and analyzes implementations aimed at applications to the computation of zero points, fixed points, nonlinear eigenvalue problems, bifurcation and turning points, and economic equilibria. Many algorithms are presented in a pseudo code format. An appendix supplies five sample FORTRAN programs with numerical examples, which readers can adapt to fit their purposes, and a description of the program package SCOUT for analyzing nonlinear problems via piecewise-linear methods. An extensive up-to-date bibliography spanning 46 pages is included. The material in this book has been presented to students of mathematics, engineering and sciences with great success, and will also serve as a valuable tool for researchers in the field.

Nonlinear PDEs: A Dynamical Systems Approach

Nonlinear PDEs: A Dynamical Systems Approach PDF Author: Guido Schneider
Publisher: American Mathematical Soc.
ISBN: 1470436132
Category : Differential equations, Nonlinear
Languages : en
Pages : 575

Book Description
This is an introductory textbook about nonlinear dynamics of PDEs, with a focus on problems over unbounded domains and modulation equations. The presentation is example-oriented, and new mathematical tools are developed step by step, giving insight into some important classes of nonlinear PDEs and nonlinear dynamics phenomena which may occur in PDEs. The book consists of four parts. Parts I and II are introductions to finite- and infinite-dimensional dynamics defined by ODEs and by PDEs over bounded domains, respectively, including the basics of bifurcation and attractor theory. Part III introduces PDEs on the real line, including the Korteweg-de Vries equation, the Nonlinear Schrödinger equation and the Ginzburg-Landau equation. These examples often occur as simplest possible models, namely as amplitude or modulation equations, for some real world phenomena such as nonlinear waves and pattern formation. Part IV explores in more detail the connections between such complicated physical systems and the reduced models. For many models, a mathematically rigorous justification by approximation results is given. The parts of the book are kept as self-contained as possible. The book is suitable for self-study, and there are various possibilities to build one- or two-semester courses from the book.

Collocation Methods for the Numerical Bifurcation Analysis of Systems of Nonlinear Partial Differential Equations

Collocation Methods for the Numerical Bifurcation Analysis of Systems of Nonlinear Partial Differential Equations PDF Author: Hamid Sharifi
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
The study of nonlinear phenomena has been an important endeavor for scientists. Some nonlinear phenomena can be modeled mathematically as nonlinear partial differential equations (PDEs). There are no analytical solutions for most nonlinear PDEs. Therefore, an appropriate numerical method must be used in order to compute an adequate approximate solution. A new class of numerical methods, called Finite Element Collocation Methods with Discontinuous Piecewise Polynomials, has recently been proposed for solving nonlinear elliptic PDE. In this thesis, this method has been generalized for solving nonlinear elliptic PDE systems using an alternative nested dissection solution procedure. Using a modified formulation of the pseudo-arclength continuation method, we have used this method in continuation studies and in the numerical bifurcation analysis of nonlinear PDE systems. In the thesis the method is introduced gradually, starting with the simplest case, linear ODE BVPs, followed by nonlinear ODE BVPs, linear scalar PDEs, nonlinear scalar PDEs, continuation problems in nonlinear scalar PDEs, and, finally, continuation problems for systems of nonlinear PDEs. AUTO has probably been the most widely used continuation software package for ODE problems. The collocation method introduced in this thesis, as well as the numerical method used to solve the resulting systems of nonlinear equations, can be viewed as a generalization to PDEs of the robust and powerful techniques for ODE BVPs that have made AUTO so widely used in computations and as a model for other continuation software projects. As a part of the research toward the construction of an AUTO-like software package for PDE problems, prototype software has been developed for the numerical bifurcation analysis of nonlinear elliptic PDE systems in two-dimensional space (2D). The UML (The Unified Modelling Language) notation is used to present the implementation algorithms and our object-oriented prototype software. We consider several test problems, as well as some practical applications, such as the Bratu-Gelfand problem, the Brusselator system, and the streamfunction-vorticity formulation of the Navier-Stokes equations for a two-dimensional incompressible fluid flow problem. These examples demonstrate the capabilities and the strength of the collocation method with discontinuous elements for solving substantial PDEs continuation problems.

Elements of Applied Bifurcation Theory

Elements of Applied Bifurcation Theory PDF Author: Yuri Kuznetsov
Publisher: Springer Science & Business Media
ISBN: 1475739788
Category : Mathematics
Languages : en
Pages : 648

Book Description
Providing readers with a solid basis in dynamical systems theory, as well as explicit procedures for application of general mathematical results to particular problems, the focus here is on efficient numerical implementations of the developed techniques. The book is designed for advanced undergraduates or graduates in applied mathematics, as well as for Ph.D. students and researchers in physics, biology, engineering, and economics who use dynamical systems as model tools in their studies. A moderate mathematical background is assumed, and, whenever possible, only elementary mathematical tools are used. This new edition preserves the structure of the first while updating the context to incorporate recent theoretical developments, in particular new and improved numerical methods for bifurcation analysis.

Mathematics of Complexity and Dynamical Systems

Mathematics of Complexity and Dynamical Systems PDF Author: Robert A. Meyers
Publisher: Springer Science & Business Media
ISBN: 1461418054
Category : Mathematics
Languages : en
Pages : 1885

Book Description
Mathematics of Complexity and Dynamical Systems is an authoritative reference to the basic tools and concepts of complexity, systems theory, and dynamical systems from the perspective of pure and applied mathematics. Complex systems are systems that comprise many interacting parts with the ability to generate a new quality of collective behavior through self-organization, e.g. the spontaneous formation of temporal, spatial or functional structures. These systems are often characterized by extreme sensitivity to initial conditions as well as emergent behavior that are not readily predictable or even completely deterministic. The more than 100 entries in this wide-ranging, single source work provide a comprehensive explication of the theory and applications of mathematical complexity, covering ergodic theory, fractals and multifractals, dynamical systems, perturbation theory, solitons, systems and control theory, and related topics. Mathematics of Complexity and Dynamical Systems is an essential reference for all those interested in mathematical complexity, from undergraduate and graduate students up through professional researchers.