Author: Hermann Brunner
Publisher: Cambridge University Press
ISBN: 1107098726
Category : Mathematics
Languages : en
Pages : 405
Book Description
See publisher description :
Volterra Integral Equations
Author: Hermann Brunner
Publisher: Cambridge University Press
ISBN: 1107098726
Category : Mathematics
Languages : en
Pages : 405
Book Description
See publisher description :
Publisher: Cambridge University Press
ISBN: 1107098726
Category : Mathematics
Languages : en
Pages : 405
Book Description
See publisher description :
Volterra Integral and Functional Equations
Author: G. Gripenberg
Publisher: Cambridge University Press
ISBN: 0521372895
Category : Mathematics
Languages : en
Pages : 727
Book Description
This book looks at the theories of Volterra integral and functional equations.
Publisher: Cambridge University Press
ISBN: 0521372895
Category : Mathematics
Languages : en
Pages : 727
Book Description
This book looks at the theories of Volterra integral and functional equations.
Collocation Methods for Volterra Integral and Related Functional Differential Equations
Author: Hermann Brunner
Publisher: Cambridge University Press
ISBN: 9780521806152
Category : Mathematics
Languages : en
Pages : 620
Book Description
Publisher Description
Publisher: Cambridge University Press
ISBN: 9780521806152
Category : Mathematics
Languages : en
Pages : 620
Book Description
Publisher Description
Linear and Nonlinear Integral Equations
Author: Abdul-Majid Wazwaz
Publisher: Springer Science & Business Media
ISBN: 3642214495
Category : Mathematics
Languages : en
Pages : 639
Book Description
Linear and Nonlinear Integral Equations: Methods and Applications is a self-contained book divided into two parts. Part I offers a comprehensive and systematic treatment of linear integral equations of the first and second kinds. The text brings together newly developed methods to reinforce and complement the existing procedures for solving linear integral equations. The Volterra integral and integro-differential equations, the Fredholm integral and integro-differential equations, the Volterra-Fredholm integral equations, singular and weakly singular integral equations, and systems of these equations, are handled in this part by using many different computational schemes. Selected worked-through examples and exercises will guide readers through the text. Part II provides an extensive exposition on the nonlinear integral equations and their varied applications, presenting in an accessible manner a systematic treatment of ill-posed Fredholm problems, bifurcation points, and singular points. Selected applications are also investigated by using the powerful Padé approximants. This book is intended for scholars and researchers in the fields of physics, applied mathematics and engineering. It can also be used as a text for advanced undergraduate and graduate students in applied mathematics, science and engineering, and related fields. Dr. Abdul-Majid Wazwaz is a Professor of Mathematics at Saint Xavier University in Chicago, Illinois, USA.
Publisher: Springer Science & Business Media
ISBN: 3642214495
Category : Mathematics
Languages : en
Pages : 639
Book Description
Linear and Nonlinear Integral Equations: Methods and Applications is a self-contained book divided into two parts. Part I offers a comprehensive and systematic treatment of linear integral equations of the first and second kinds. The text brings together newly developed methods to reinforce and complement the existing procedures for solving linear integral equations. The Volterra integral and integro-differential equations, the Fredholm integral and integro-differential equations, the Volterra-Fredholm integral equations, singular and weakly singular integral equations, and systems of these equations, are handled in this part by using many different computational schemes. Selected worked-through examples and exercises will guide readers through the text. Part II provides an extensive exposition on the nonlinear integral equations and their varied applications, presenting in an accessible manner a systematic treatment of ill-posed Fredholm problems, bifurcation points, and singular points. Selected applications are also investigated by using the powerful Padé approximants. This book is intended for scholars and researchers in the fields of physics, applied mathematics and engineering. It can also be used as a text for advanced undergraduate and graduate students in applied mathematics, science and engineering, and related fields. Dr. Abdul-Majid Wazwaz is a Professor of Mathematics at Saint Xavier University in Chicago, Illinois, USA.
Analytical and Numerical Methods for Volterra Equations
Author: Peter Linz
Publisher: SIAM
ISBN: 9781611970852
Category : Mathematics
Languages : en
Pages : 240
Book Description
Presents an aspect of activity in integral equations methods for the solution of Volterra equations for those who need to solve real-world problems. Since there are few known analytical methods leading to closed-form solutions, the emphasis is on numerical techniques. The major points of the analytical methods used to study the properties of the solution are presented in the first part of the book. These techniques are important for gaining insight into the qualitative behavior of the solutions and for designing effective numerical methods. The second part of the book is devoted entirely to numerical methods. The author has chosen the simplest possible setting for the discussion, the space of real functions of real variables. The text is supplemented by examples and exercises.
Publisher: SIAM
ISBN: 9781611970852
Category : Mathematics
Languages : en
Pages : 240
Book Description
Presents an aspect of activity in integral equations methods for the solution of Volterra equations for those who need to solve real-world problems. Since there are few known analytical methods leading to closed-form solutions, the emphasis is on numerical techniques. The major points of the analytical methods used to study the properties of the solution are presented in the first part of the book. These techniques are important for gaining insight into the qualitative behavior of the solutions and for designing effective numerical methods. The second part of the book is devoted entirely to numerical methods. The author has chosen the simplest possible setting for the discussion, the space of real functions of real variables. The text is supplemented by examples and exercises.
Nonlinear Volterra Integral Equations
Author: Richard K. Miller
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 488
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 488
Book Description
The Classical Theory of Integral Equations
Author: Stephen M. Zemyan
Publisher: Springer Science & Business Media
ISBN: 0817683496
Category : Mathematics
Languages : en
Pages : 350
Book Description
The Classical Theory of Integral Equations is a thorough, concise, and rigorous treatment of the essential aspects of the theory of integral equations. The book provides the background and insight necessary to facilitate a complete understanding of the fundamental results in the field. With a firm foundation for the theory in their grasp, students will be well prepared and motivated for further study. Included in the presentation are: A section entitled Tools of the Trade at the beginning of each chapter, providing necessary background information for comprehension of the results presented in that chapter; Thorough discussions of the analytical methods used to solve many types of integral equations; An introduction to the numerical methods that are commonly used to produce approximate solutions to integral equations; Over 80 illustrative examples that are explained in meticulous detail; Nearly 300 exercises specifically constructed to enhance the understanding of both routine and challenging concepts; Guides to Computation to assist the student with particularly complicated algorithmic procedures. This unique textbook offers a comprehensive and balanced treatment of material needed for a general understanding of the theory of integral equations by using only the mathematical background that a typical undergraduate senior should have. The self-contained book will serve as a valuable resource for advanced undergraduate and beginning graduate-level students as well as for independent study. Scientists and engineers who are working in the field will also find this text to be user friendly and informative.
Publisher: Springer Science & Business Media
ISBN: 0817683496
Category : Mathematics
Languages : en
Pages : 350
Book Description
The Classical Theory of Integral Equations is a thorough, concise, and rigorous treatment of the essential aspects of the theory of integral equations. The book provides the background and insight necessary to facilitate a complete understanding of the fundamental results in the field. With a firm foundation for the theory in their grasp, students will be well prepared and motivated for further study. Included in the presentation are: A section entitled Tools of the Trade at the beginning of each chapter, providing necessary background information for comprehension of the results presented in that chapter; Thorough discussions of the analytical methods used to solve many types of integral equations; An introduction to the numerical methods that are commonly used to produce approximate solutions to integral equations; Over 80 illustrative examples that are explained in meticulous detail; Nearly 300 exercises specifically constructed to enhance the understanding of both routine and challenging concepts; Guides to Computation to assist the student with particularly complicated algorithmic procedures. This unique textbook offers a comprehensive and balanced treatment of material needed for a general understanding of the theory of integral equations by using only the mathematical background that a typical undergraduate senior should have. The self-contained book will serve as a valuable resource for advanced undergraduate and beginning graduate-level students as well as for independent study. Scientists and engineers who are working in the field will also find this text to be user friendly and informative.
Handbook of Integral Equations
Author: Andrei D. Polyanin
Publisher: CRC Press
ISBN: 0203881052
Category : Mathematics
Languages : en
Pages : 1143
Book Description
Unparalleled in scope compared to the literature currently available, the Handbook of Integral Equations, Second Edition contains over 2,500 integral equations with solutions as well as analytical and numerical methods for solving linear and nonlinear equations. It explores Volterra, Fredholm, WienerHopf, Hammerstein, Uryson, and other equa
Publisher: CRC Press
ISBN: 0203881052
Category : Mathematics
Languages : en
Pages : 1143
Book Description
Unparalleled in scope compared to the literature currently available, the Handbook of Integral Equations, Second Edition contains over 2,500 integral equations with solutions as well as analytical and numerical methods for solving linear and nonlinear equations. It explores Volterra, Fredholm, WienerHopf, Hammerstein, Uryson, and other equa
Integral Equations
Author: F. G. Tricomi
Publisher: Courier Corporation
ISBN: 0486158306
Category : Mathematics
Languages : en
Pages : 256
Book Description
Authoritative, well-written treatment of extremely useful mathematical tool with wide applications. Topics include Volterra Equations, Fredholm Equations, Symmetric Kernels and Orthogonal Systems of Functions, more. Advanced undergraduate to graduate level. Exercises. Bibliography.
Publisher: Courier Corporation
ISBN: 0486158306
Category : Mathematics
Languages : en
Pages : 256
Book Description
Authoritative, well-written treatment of extremely useful mathematical tool with wide applications. Topics include Volterra Equations, Fredholm Equations, Symmetric Kernels and Orthogonal Systems of Functions, more. Advanced undergraduate to graduate level. Exercises. Bibliography.
First Course In Integral Equations, A (Second Edition)
Author: Abdul-majid Wazwaz
Publisher: World Scientific Publishing Company
ISBN: 9814675148
Category : Mathematics
Languages : en
Pages : 327
Book Description
This second edition integrates the newly developed methods with classical techniques to give both modern and powerful approaches for solving integral equations. It provides a comprehensive treatment of linear and nonlinear Fredholm and Volterra integral equations of the first and second kinds. The materials are presented in an accessible and straightforward manner to readers, particularly those from non-mathematics backgrounds. Numerous well-explained applications and examples as well as practical exercises are presented to guide readers through the text. Selected applications from mathematics, science and engineering are investigated by using the newly developed methods.This volume consists of nine chapters, pedagogically organized, with six chapters devoted to linear integral equations, two chapters on nonlinear integral equations, and the last chapter on applications. It is intended for scholars and researchers, and can be used for advanced undergraduate and graduate students in applied mathematics, science and engineering.Click here for solutions manual.
Publisher: World Scientific Publishing Company
ISBN: 9814675148
Category : Mathematics
Languages : en
Pages : 327
Book Description
This second edition integrates the newly developed methods with classical techniques to give both modern and powerful approaches for solving integral equations. It provides a comprehensive treatment of linear and nonlinear Fredholm and Volterra integral equations of the first and second kinds. The materials are presented in an accessible and straightforward manner to readers, particularly those from non-mathematics backgrounds. Numerous well-explained applications and examples as well as practical exercises are presented to guide readers through the text. Selected applications from mathematics, science and engineering are investigated by using the newly developed methods.This volume consists of nine chapters, pedagogically organized, with six chapters devoted to linear integral equations, two chapters on nonlinear integral equations, and the last chapter on applications. It is intended for scholars and researchers, and can be used for advanced undergraduate and graduate students in applied mathematics, science and engineering.Click here for solutions manual.