Testing R Code PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Testing R Code PDF full book. Access full book title Testing R Code by Richard Cotton. Download full books in PDF and EPUB format.

Testing R Code

Testing R Code PDF Author: Richard Cotton
Publisher: CRC Press
ISBN: 1498763669
Category : Computers
Languages : en
Pages : 178

Book Description
Learn how to write R code with fewer bugs. The problem with programming is that you are always one typo away from writing something silly. Likewise with data analysis, a small mistake in your model can lead to a big mistake in your results. Combining the two disciplines means that it is all too easy for a missed minus sign to generate a false prediction that you don’t spot until it’s too late. Testing is the only way to be sure that your code, and your results, are correct. Testing R Code teaches you how to perform development-time testing using the testthat package, allowing you to ensure that your code works as intended. The book also teaches run-time testing using the assertive package; enabling your users to correctly run your code. After beginning with an introduction to testing in R, the book explores more advanced cases such as integrating tests into R packages; testing code that accesses databases; testing C++ code with Rcpp; and testing graphics. Each topic is explained with real-world examples, and has accompanying exercises for readers to practise their skills — only a small amount of experience with R is needed to get started!

Testing R Code

Testing R Code PDF Author: Richard Cotton
Publisher: CRC Press
ISBN: 1498763669
Category : Computers
Languages : en
Pages : 178

Book Description
Learn how to write R code with fewer bugs. The problem with programming is that you are always one typo away from writing something silly. Likewise with data analysis, a small mistake in your model can lead to a big mistake in your results. Combining the two disciplines means that it is all too easy for a missed minus sign to generate a false prediction that you don’t spot until it’s too late. Testing is the only way to be sure that your code, and your results, are correct. Testing R Code teaches you how to perform development-time testing using the testthat package, allowing you to ensure that your code works as intended. The book also teaches run-time testing using the assertive package; enabling your users to correctly run your code. After beginning with an introduction to testing in R, the book explores more advanced cases such as integrating tests into R packages; testing code that accesses databases; testing C++ code with Rcpp; and testing graphics. Each topic is explained with real-world examples, and has accompanying exercises for readers to practise their skills — only a small amount of experience with R is needed to get started!

Mastering Shiny

Mastering Shiny PDF Author: Hadley Wickham
Publisher: "O'Reilly Media, Inc."
ISBN: 149204735X
Category : Computers
Languages : en
Pages : 372

Book Description
Master the Shiny web framework—and take your R skills to a whole new level. By letting you move beyond static reports, Shiny helps you create fully interactive web apps for data analyses. Users will be able to jump between datasets, explore different subsets or facets of the data, run models with parameter values of their choosing, customize visualizations, and much more. Hadley Wickham from RStudio shows data scientists, data analysts, statisticians, and scientific researchers with no knowledge of HTML, CSS, or JavaScript how to create rich web apps from R. This in-depth guide provides a learning path that you can follow with confidence, as you go from a Shiny beginner to an expert developer who can write large, complex apps that are maintainable and performant. Get started: Discover how the major pieces of a Shiny app fit together Put Shiny in action: Explore Shiny functionality with a focus on code samples, example apps, and useful techniques Master reactivity: Go deep into the theory and practice of reactive programming and examine reactive graph components Apply best practices: Examine useful techniques for making your Shiny apps work well in production

R Packages

R Packages PDF Author: Hadley Wickham
Publisher: "O'Reilly Media, Inc."
ISBN: 1491910542
Category : Computers
Languages : en
Pages : 275

Book Description
Turn your R code into packages that others can easily download and use. This practical book shows you how to bundle reusable R functions, sample data, and documentation together by applying author Hadley Wickham’s package development philosophy. In the process, you’ll work with devtools, roxygen, and testthat, a set of R packages that automate common development tasks. Devtools encapsulates best practices that Hadley has learned from years of working with this programming language. Ideal for developers, data scientists, and programmers with various backgrounds, this book starts you with the basics and shows you how to improve your package writing over time. You’ll learn to focus on what you want your package to do, rather than think about package structure. Learn about the most useful components of an R package, including vignettes and unit tests Automate anything you can, taking advantage of the years of development experience embodied in devtools Get tips on good style, such as organizing functions into files Streamline your development process with devtools Learn the best way to submit your package to the Comprehensive R Archive Network (CRAN) Learn from a well-respected member of the R community who created 30 R packages, including ggplot2, dplyr, and tidyr

Advanced R

Advanced R PDF Author: Hadley Wickham
Publisher: CRC Press
ISBN: 1498759807
Category : Mathematics
Languages : en
Pages : 476

Book Description
An Essential Reference for Intermediate and Advanced R Programmers Advanced R presents useful tools and techniques for attacking many types of R programming problems, helping you avoid mistakes and dead ends. With more than ten years of experience programming in R, the author illustrates the elegance, beauty, and flexibility at the heart of R. The book develops the necessary skills to produce quality code that can be used in a variety of circumstances. You will learn: The fundamentals of R, including standard data types and functions Functional programming as a useful framework for solving wide classes of problems The positives and negatives of metaprogramming How to write fast, memory-efficient code This book not only helps current R users become R programmers but also shows existing programmers what’s special about R. Intermediate R programmers can dive deeper into R and learn new strategies for solving diverse problems while programmers from other languages can learn the details of R and understand why R works the way it does.

The Book of R

The Book of R PDF Author: Tilman M. Davies
Publisher: No Starch Press
ISBN: 1593277792
Category : Computers
Languages : en
Pages : 833

Book Description
The Book of R is a comprehensive, beginner-friendly guide to R, the world’s most popular programming language for statistical analysis. Even if you have no programming experience and little more than a grounding in the basics of mathematics, you’ll find everything you need to begin using R effectively for statistical analysis. You’ll start with the basics, like how to handle data and write simple programs, before moving on to more advanced topics, like producing statistical summaries of your data and performing statistical tests and modeling. You’ll even learn how to create impressive data visualizations with R’s basic graphics tools and contributed packages, like ggplot2 and ggvis, as well as interactive 3D visualizations using the rgl package. Dozens of hands-on exercises (with downloadable solutions) take you from theory to practice, as you learn: –The fundamentals of programming in R, including how to write data frames, create functions, and use variables, statements, and loops –Statistical concepts like exploratory data analysis, probabilities, hypothesis tests, and regression modeling, and how to execute them in R –How to access R’s thousands of functions, libraries, and data sets –How to draw valid and useful conclusions from your data –How to create publication-quality graphics of your results Combining detailed explanations with real-world examples and exercises, this book will provide you with a solid understanding of both statistics and the depth of R’s functionality. Make The Book of R your doorway into the growing world of data analysis.

R for Data Science

R for Data Science PDF Author: Hadley Wickham
Publisher: "O'Reilly Media, Inc."
ISBN: 1491910364
Category : Computers
Languages : en
Pages : 521

Book Description
Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results

Efficient R Programming

Efficient R Programming PDF Author: Colin Gillespie
Publisher: "O'Reilly Media, Inc."
ISBN: 1491950757
Category : Computers
Languages : en
Pages : 220

Book Description
There are many excellent R resources for visualization, data science, and package development. Hundreds of scattered vignettes, web pages, and forums explain how to use R in particular domains. But little has been written on how to simply make R work effectively—until now. This hands-on book teaches novices and experienced R users how to write efficient R code. Drawing on years of experience teaching R courses, authors Colin Gillespie and Robin Lovelace provide practical advice on a range of topics—from optimizing the set-up of RStudio to leveraging C++—that make this book a useful addition to any R user’s bookshelf. Academics, business users, and programmers from a wide range of backgrounds stand to benefit from the guidance in Efficient R Programming. Get advice for setting up an R programming environment Explore general programming concepts and R coding techniques Understand the ingredients of an efficient R workflow Learn how to efficiently read and write data in R Dive into data carpentry—the vital skill for cleaning raw data Optimize your code with profiling, standard tricks, and other methods Determine your hardware capabilities for handling R computation Maximize the benefits of collaborative R programming Accelerate your transition from R hacker to R programmer

Learning Statistics with R

Learning Statistics with R PDF Author: Daniel Navarro
Publisher: Lulu.com
ISBN: 1326189727
Category : Psychology
Languages : en
Pages : 617

Book Description
"Learning Statistics with R" covers the contents of an introductory statistics class, as typically taught to undergraduate psychology students, focusing on the use of the R statistical software and adopting a light, conversational style throughout. The book discusses how to get started in R, and gives an introduction to data manipulation and writing scripts. From a statistical perspective, the book discusses descriptive statistics and graphing first, followed by chapters on probability theory, sampling and estimation, and null hypothesis testing. After introducing the theory, the book covers the analysis of contingency tables, t-tests, ANOVAs and regression. Bayesian statistics are covered at the end of the book. For more information (and the opportunity to check the book out before you buy!) visit http://ua.edu.au/ccs/teaching/lsr or http://learningstatisticswithr.com

Modern Statistics with R

Modern Statistics with R PDF Author: Måns Thulin
Publisher: BoD - Books on Demand
ISBN: 9152701514
Category : Mathematics
Languages : en
Pages : 598

Book Description
The past decades have transformed the world of statistical data analysis, with new methods, new types of data, and new computational tools. The aim of Modern Statistics with R is to introduce you to key parts of the modern statistical toolkit. It teaches you: - Data wrangling - importing, formatting, reshaping, merging, and filtering data in R. - Exploratory data analysis - using visualisation and multivariate techniques to explore datasets. - Statistical inference - modern methods for testing hypotheses and computing confidence intervals. - Predictive modelling - regression models and machine learning methods for prediction, classification, and forecasting. - Simulation - using simulation techniques for sample size computations and evaluations of statistical methods. - Ethics in statistics - ethical issues and good statistical practice. - R programming - writing code that is fast, readable, and free from bugs. Starting from the very basics, Modern Statistics with R helps you learn R by working with R. Topics covered range from plotting data and writing simple R code to using cross-validation for evaluating complex predictive models and using simulation for sample size determination. The book includes more than 200 exercises with fully worked solutions. Some familiarity with basic statistical concepts, such as linear regression, is assumed. No previous programming experience is needed.

Introduction to Data Science

Introduction to Data Science PDF Author: Rafael A. Irizarry
Publisher: CRC Press
ISBN: 1000708039
Category : Mathematics
Languages : en
Pages : 794

Book Description
Introduction to Data Science: Data Analysis and Prediction Algorithms with R introduces concepts and skills that can help you tackle real-world data analysis challenges. It covers concepts from probability, statistical inference, linear regression, and machine learning. It also helps you develop skills such as R programming, data wrangling, data visualization, predictive algorithm building, file organization with UNIX/Linux shell, version control with Git and GitHub, and reproducible document preparation. This book is a textbook for a first course in data science. No previous knowledge of R is necessary, although some experience with programming may be helpful. The book is divided into six parts: R, data visualization, statistics with R, data wrangling, machine learning, and productivity tools. Each part has several chapters meant to be presented as one lecture. The author uses motivating case studies that realistically mimic a data scientist’s experience. He starts by asking specific questions and answers these through data analysis so concepts are learned as a means to answering the questions. Examples of the case studies included are: US murder rates by state, self-reported student heights, trends in world health and economics, the impact of vaccines on infectious disease rates, the financial crisis of 2007-2008, election forecasting, building a baseball team, image processing of hand-written digits, and movie recommendation systems. The statistical concepts used to answer the case study questions are only briefly introduced, so complementing with a probability and statistics textbook is highly recommended for in-depth understanding of these concepts. If you read and understand the chapters and complete the exercises, you will be prepared to learn the more advanced concepts and skills needed to become an expert.